Advertisement

The MRL Model: A Valuable Tool in Studies of Autoimmunity-Brain Interactions

  • Boris Šakić
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1781)

Abstract

The link between systemic autoimmunity, brain pathology, and aberrant behavior is still a largely unexplored field of biomedical science. Accumulating evidence points to causal relationships between immune factors, neurodegeneration, and neuropsychiatric manifestations. By documenting autoimmunity-associated neuronal degeneration and cytotoxicity of the cerebrospinal fluid from disease-affected subjects, the murine MRL model had shown high validity in revealing principal pathogenic circuits. In addition, unlike any other autoimmune strain, MRL mice produce antibodies commonly found in patients suffering from lupus and other autoimmune disorders. This review highlights importance of the MRL model as a useful preparation in understanding the links between immune system and brain function.

Key words

Autoimmunity Lupus Behavioral dysfunction Neurodegeneration Immunopsychiatry Animal model 

Notes

Acknowledgments

This work was supported by the grants from the Ontario Mental Health Foundation and Canadian Institutes of Heath Research.

References

  1. 1.
    Ader R, Felten D, Cohen N (2001) Psychoneuroimmunology, vol 1-2, 3rd edn. Academic Press, New YorkGoogle Scholar
  2. 2.
    Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85(1–3):49–59PubMedCrossRefGoogle Scholar
  3. 3.
    Benveniste EN, Huneycutt BS, Shrikant P, Ballestas ME (1995) Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system. Brain Behav Immun 9:304–314PubMedCrossRefGoogle Scholar
  4. 4.
    Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917:608–617PubMedCrossRefGoogle Scholar
  5. 5.
    McEwen BS (2000) Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology 22(2):108–124PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 16:115–130PubMedCrossRefGoogle Scholar
  7. 7.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    McEwen BS (2003) Mood disorders and allostatic load. Biol Psychiatry 54(3):200–207PubMedCrossRefGoogle Scholar
  9. 9.
    McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RH, Kitson RP, Miller AH, Spencer RL, Weiss JM (1997) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Rev 23(1–2):79–133PubMedCrossRefGoogle Scholar
  10. 10.
    Cotman CW, Brinton RE, Galaburda A, McEwen B, Schneider DM (1987) The neuro-immune-endocrine connection. Raven Press, New YorkGoogle Scholar
  11. 11.
    Kapadia M, Sakic B (2011) Autoimmune and inflammatory mechanisms of CNS damage. Prog Neurobiol 95(3):301–333PubMedCrossRefGoogle Scholar
  12. 12.
    Hanly JG (2005) Neuropsychiatric lupus. Rheum Dis Clin North Am 31(2):273–298PubMedCrossRefGoogle Scholar
  13. 13.
    Tincani A, Brey R, Balestrieri G, Vitali C, Doria A, Galeazzi M, Meroni PL, Migliorini P, Neri R, Tavoni A, Bombardieri S (1996) International survey on the management of patients with SLE .2. The results of a questionnaire regarding neuropsychiatric manifestations. Clin Exp Rheumatol 14(Suppl. 16):S23–S29PubMedGoogle Scholar
  14. 14.
    van Dam AP, Wekking EM, Oomen HA (1991) Psychiatric symptoms as features of systemic lupus erythematosus. Psychother Psychosom 55(2–4):132–140PubMedGoogle Scholar
  15. 15.
    Colamussi P, Giganti M, Cittanti C, Dovigo L, Trotta F, Tola MR, Tamarozzi R, Lucignani G, Piffanelli A (1995) Brain single-photon emission tomography with Tc-99m-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations. Eur J Nucl Med 22:17–24PubMedCrossRefGoogle Scholar
  16. 16.
    Handa R, Sahota P, Kumar M, Jagannathan NR, Bal CS, Gulati M, Tripathi BM, Wali JP (2003) In vivo proton magnetic resonance spectroscopy (MRS) and single photon emission computerized tomography (SPECT) in systemic lupus erythematosus (SLE). Magn Reson Imaging 21(9):1033–1037PubMedCrossRefGoogle Scholar
  17. 17.
    Huang WS, Chiu PY, Tsai CH, Kao A, Lee CC (2002) Objective evidence of abnormal regional cerebral blood flow in patients with systemic lupus erythematosus on Tc-99m ECD brain SPECT. Rheumatol Int 22(5):178–181PubMedCrossRefGoogle Scholar
  18. 18.
    Lopez-Longo FJ, Carol N, Almoguera MI, Olazaran J, onso-Farto JC, Ortega A, Monteagudo I, Gonzalez CM, Carreno L (2003) Cerebral hypoperfusion detected by SPECT in patients with systemic lupus erythematosus is related to clinical activity and cumulative tissue damage. Lupus 12(11):813–819PubMedCrossRefGoogle Scholar
  19. 19.
    Komatsu N, Kodama K, Yamanouchi N, Okada S, Noda S, Nawata Y, Takabayashi K, Iwamoto I, Saito Y, Uchida Y, Ito H, Yoshikawa K, Sato T (1999) Decreased regional cerebral metabolic rate for glucose in systemic lupus erythematosus patients with psychiatric symptoms. Eur Neurol 42(1):41–48PubMedCrossRefGoogle Scholar
  20. 20.
    Brooks WM, Sabet A, Sibbitt WL, Barker PB, van Zijl PC, Duyn JH, Moonen CT (1997) Neurochemistry of brain lesions determined by spectroscopic imaging in systemic lupus erythematosus. J Rheumatol 24(12):2323–2329PubMedGoogle Scholar
  21. 21.
    Volkow ND, Warner N, McIntyre R, Valentine A, Kulkarni M, Mullani N, Gould L (1988) Cerebral involvement in systemic lupus erythematosus. Am J Physiol Imaging 3(2):91–98PubMedGoogle Scholar
  22. 22.
    Gonzalez-Scarano F, Lisak RP, Bilaniuk LT, Zimmerman RA, Atkins PC, Zweiman B (1979) Cranial computed tomography in the diagnosis of systemic lupus erythematosus. Ann Neurol 5(2):158–165PubMedCrossRefGoogle Scholar
  23. 23.
    Kaell AT, Shetty M, Lee BC, Lockshin MD (1986) The diversity of neurologic events in systemic lupus erythematosus. Prospective clinical and computed tomographic classification of 82 events in 71 patients. Arch Neurol 43(3):273–276PubMedCrossRefGoogle Scholar
  24. 24.
    Miguel EC, Pereira RM, Pereira CA, Baer L, Gomes RE, de Sa LC, Hirsch R, de Barros NG, de Navarro JM, Gentil V (1994) Psychiatric manifestations of systemic lupus erythematosus: clinical features, symptoms, and signs of central nervous system activity in 43 patients. Medicine 73(4):224–232PubMedCrossRefGoogle Scholar
  25. 25.
    Omdal R, Selseth B, Klow NE, Husby G, Mellgren SI (1989) Clinical neurological, electrophysiological, and cerebral CT scan findings in systemic lupus erythematosus. Scand J Rheumatol 18(5):283–289PubMedCrossRefGoogle Scholar
  26. 26.
    Ainiala H, Dastidar P, Loukkola J, Lehtimaki T, Korpela M, Peltola J, Hietaharju A (2005) Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: a population-based study. Scand J Rheumatol 34(5):376–382PubMedCrossRefGoogle Scholar
  27. 27.
    Waterloo K, Omdal R, Jacobsen EA, Klow NE, Husby G, Torbergsen T, Mellgren SI (1999) Cerebral computed tomography and electroencephalography compared with neuropsychological findings in systemic lupus erythematosus. J Neurol 246(8):706–711PubMedCrossRefGoogle Scholar
  28. 28.
    Sibbitt WL, Sibbitt RR (1993) Magnetic resonance spectroscopy and positron emission tomography scanning in neuropsychiatric systemic lupus erythematosus. Rheum Dis Clin North Am 19(4):851–868PubMedGoogle Scholar
  29. 29.
    Sibbitt WL, Haseler LJ, Griffey RH, Hart BL, Sibbitt RR, Matwiyoff NA (1994) Analysis of cerebral structural changes in systemic lupus erythematosus by proton MR spectroscopy. AJNR Am J Neuroradiol 15:923–928PubMedGoogle Scholar
  30. 30.
    Jennekens FG, Kater L (2002) The central nervous system in systemic lupus erythematosus. Part 2. Pathogenetic mechanisms of clinical syndromes: a literature investigation. Rheumatology (Oxford) 41(6):619–630CrossRefGoogle Scholar
  31. 31.
    McLean BN, Miller D, Thompson EJ (1995) Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behcet's disease involving the nervous system. J Neurol Neurosurg Psychiatry 58(5):548–554PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hirohata S, Hirose S, Miyamoto T (1985) Cerebrospinal fluid IgM, IgA, and IgG indexes in systemic lupus erythematosus. Their use as estimates of central nervous system disease activity. Arch Intern Med 145(10):1843–1846PubMedCrossRefGoogle Scholar
  33. 33.
    Winfield JB, Shaw M, Silverman LM, Eisenberg RA, Wilson HA III, Koffler D (1983) Intrathecal IgG synthesis and blood-brain barrier impairment in patients with systemic lupus erythematosus and central nervous system dysfunction. Am J Med 74(5):837–844PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshio T, Hirata D, Onda K, Nara H, Minota S (2005) Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol 32(1):34–39PubMedGoogle Scholar
  35. 35.
    Greenwood DL, Gitlits VM, Alderuccio F, Sentry JW, Toh BH (2002) Autoantibodies in neuropsychiatric lupus. Autoimmunity 35(2):79–86PubMedCrossRefGoogle Scholar
  36. 36.
    Henn FA, McKinney WT (1987) Animal models in psychiatry. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 687–695Google Scholar
  37. 37.
    Dixon FJ, Andrews BS, Eisenberg RA, McConahey PJ, Theofilopoulos AN, Wilson CB (1978) Etiology and pathogenesis of a spontaneous lupus-like syndrome in mice. Arthritis Rheum 21:S64–S67PubMedCrossRefGoogle Scholar
  38. 38.
    Szechtman H, Sakic B, Denburg JA (1997) Behaviour of MRL mice: an animal model of disturbed behaviour in systemic autoimmune disease. Lupus 6(3):223–229PubMedCrossRefGoogle Scholar
  39. 39.
    Sakic B, Szechtman H, Denburg JA (1997) Neurobehavioral alteration in autoimmune mice. Neurosci Biobehav Rev 21(3):327–340PubMedCrossRefGoogle Scholar
  40. 40.
    Alexander JJ, Quigg RJ (2007) Systemic lupus erythematosus and the brain: what mice are telling us. Neurochem Int 50(1):5–11PubMedCrossRefGoogle Scholar
  41. 41.
    Sherman GF, Galaburda AM, Behan PO, Rosen GD (1987) Neuroanatomical anomalies in autoimmune mice. Acta Neuropathol (Berl ) 74:239–242CrossRefGoogle Scholar
  42. 42.
    Theofilopoulos AN (1992) Murine models of lupus. In: Lahita RG (ed) Systemic lupus erythematosus, 2nd edn. Churchill Livingstone, New York, pp 121–194Google Scholar
  43. 43.
    Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215PubMedCrossRefGoogle Scholar
  44. 44.
    Gulinello M, Putterman C (2011) The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol 2011:207504PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jeltsch-David H, Muller S (2014) Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev 13(9):963–973. https://doi.org/10.1016/j.autrev.2014.08.015 CrossRefPubMedGoogle Scholar
  46. 46.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317PubMedCrossRefGoogle Scholar
  47. 47.
    Nagata S (1994) Mutations in the Fas antigen gene in lpr mice. Semin Immunol 6(1):3–8PubMedCrossRefGoogle Scholar
  48. 48.
    Singer GG, Carrera AC, Marshakrothstein A, Martineza C, Abbas AK (1994) Apoptosis, fas and systemic autoimmunity: the MRL-Ipr/Ipr model. Curr Opin Immunol 6:913–920PubMedCrossRefGoogle Scholar
  49. 49.
    Park C, Sakamaki K, Tachibana O, Yamashima T, Yamashita J, Yonehara S (1998) Expression of Fas antigen in the normal mouse brain. Biochem Biophys Res Commun 252(3):623–628PubMedCrossRefGoogle Scholar
  50. 50.
    Sakic B, Kolb B, Whishaw IQ, Gorny G, Szechtman H, Denburg JA (2000) Immunosuppression prevents neuronal atrophy in lupus-prone mice: evidence for brain damage induced by autoimmune disease? J Neuroimmunol 111(1–2):93–101PubMedCrossRefGoogle Scholar
  51. 51.
    Sakic B, Denburg JA, Denburg SD, Szechtman H (1996) Blunted sensitivity to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res Bull 41(5):305–311PubMedCrossRefGoogle Scholar
  52. 52.
    Sakic B, Szechtman H, Denburg SD, Denburg JA (1995) Immunosuppressive treatment prevents behavioral deficit in autoimmune MRL-lpr mice. Physiol Behav 58(4):797–802PubMedCrossRefGoogle Scholar
  53. 53.
    Ballok DA, Woulfe J, Sur M, Cyr M, Sakic B (2004) Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus 14(5):649–661PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Williams S, Sakic B, Hoffman SA (2010) Circulating brain-reactive autoantibodies and behavioral deficits in the MRL model of CNS lupus. J Neuroimmunol 218(1–2):73–82PubMedCrossRefGoogle Scholar
  55. 55.
    Ballok DA (2007) Neuroimmunopathology in a murine model of neuropsychiatric lupus. Brain Res Rev 54(1):67–79PubMedCrossRefGoogle Scholar
  56. 56.
    Sakic B, Szechtman H, Talangbayan H, Denburg SD, Carbotte RM, Denburg JA (1994) Disturbed emotionality in autoimmune MRL-lpr mice. Physiol Behav 56(3):609–617PubMedCrossRefGoogle Scholar
  57. 57.
    Sakic B, Szechtman H, Denburg S, Carbotte R, Denburg JA (1993) Emotionality in lupus-prone mice: relationships to autoimmunity. Annual Research Day, Dept. of Biomedical Sciences, McMaster UniversityGoogle Scholar
  58. 58.
    Sakic B, Szechtman H, Keffer M, Talangbayan H, Stead R, Denburg JA (1992) A behavioral profile of autoimmune lupus-prone MRL mice. Brain Behav Immun 6:265–285PubMedCrossRefGoogle Scholar
  59. 59.
    Ballok DA, Szechtman H, Sakic B (2003) Taste responsiveness and diet preference in autoimmune MRL mice. Behav Brain Res 140(1–2):119–130PubMedCrossRefGoogle Scholar
  60. 60.
    Sakic B, Gurunlian L, Denburg SD (1998) Reduced aggressiveness and low testosterone levels in autoimmune MRL-lpr males. Physiol Behav 63(2):305–309PubMedCrossRefGoogle Scholar
  61. 61.
    Sakic B, Szechtman H, Denburg SD, Carbotte RM, Denburg JA (1993) Spatial learning during the course of autoimmune disease in MRL mice. Behav Brain Res 54:57–66PubMedCrossRefGoogle Scholar
  62. 62.
    Hess DC, Taormina M, Thompson J, Sethi KD, Diamond B, Rao R, Feldman DS (1993) Cognitive and neurologic deficits in the MRL/lpr mouse: a clinicopathologic study. J Rheumatol 20:610–617PubMedGoogle Scholar
  63. 63.
    Brey RL, Amato AA, Kagan-Hallet K, Rhine CB, Stallworth CL (1997) Anti-intercellular adhesion molecule-1 (ICAM-1) antibody treatment prevents central and peripheral nervous system disease in autoimmune-prone mice. Lupus 6(8):645–651PubMedCrossRefGoogle Scholar
  64. 64.
    Sakic B, Szechtman H, Stead R, Denburg JA (1996) Joint pathology and behavioral performance in autoimmune MRL-lpr mice. Physiol Behav 60(3):901–905PubMedCrossRefGoogle Scholar
  65. 65.
    Abbott NJ, Mendonca LL, Dolman DE (2003) The blood-brain barrier in systemic lupus erythematosus. Lupus 12(12):908–915PubMedCrossRefGoogle Scholar
  66. 66.
    Diamond B (2010) Antibodies and the brain: lessons from lupus. J Immunol 185(5):2637–2640PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vogelweid CM, Johnson GC, Besch-Williford CL, Basler J, Walker SE (1991) Inflammatory central nervous system disease in lupus-prone MRL/lpr mice: comparative histologic and immunohistochemical findings. J Neuroimmunol 35:89–99PubMedCrossRefGoogle Scholar
  68. 68.
    Sidor MM, Sakic B, Malinowski PM, Ballok DA, Oleschuk CJ, Macri J (2005) Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol 165(1–2):104–113PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Alexander EL, Murphy ED, Roths JB, Alexander GE (1983) Congenic autoimmune murine models of central nervous system disease in connective tissue disorders. Ann Neurol 14:242–248PubMedCrossRefGoogle Scholar
  70. 70.
    Farrell M, Sakic B, Szechtman H, Denburg JA (1997) Effect of cyclophosphamide on leucocytic infiltration in the brain of MRL/lpr mice. Lupus 6(3):268–274PubMedCrossRefGoogle Scholar
  71. 71.
    Ma X, Foster J, Sakic B (2006) Distribution and prevalence of leukocyte phenotypes in brains of lupus-prone mice. J Neuroimmunol 179(1–2):26–36PubMedCrossRefGoogle Scholar
  72. 72.
    McHale JF, Harari OA, Marshall D, Haskard DO (1999) TNF-alpha and IL-1 sequentially induce endothelial ICAM-1 and VCAM-1 expression in MRL/lpr lupus-prone mice. J Immunol 163(7):3993–4000PubMedGoogle Scholar
  73. 73.
    Zameer A, Hoffman SA (2003) Increased ICAM-1 and VCAM-1 expression in the brains of autoimmune mice. J Neuroimmunol 142(1–2):67–74PubMedCrossRefGoogle Scholar
  74. 74.
    Tomita M, Holman BJ, Williams LS, Pang KC, Santoro TJ (2001) Cerebellar dysfunction is associated with overexpression of proinflammatory cytokine genes in lupus. J Neurosci Res 64(1):26–33PubMedCrossRefGoogle Scholar
  75. 75.
    Tomita M, Holman BJ, Santoro TJ (2001) Aberrant cytokine gene expression in the hippocampus in murine systemic lupus erythematosus. Neurosci Lett 302(2–3):129–132PubMedCrossRefGoogle Scholar
  76. 76.
    Alexander JJ, Jacob A, Bao L, Macdonald RL, Quigg RJ (2005) Complement-dependent apoptosis and inflammatory gene changes in murine lupus cerebritis. J Immunol 175(12):8312–8319PubMedCrossRefGoogle Scholar
  77. 77.
    McIntyre KR, Ayer-LeLievre C, Persson H (1990) Class II major histocompatibility complex (MHC) gene expression in the mouse brain is elevated in the autoimmune MRL/Mp-lpr/lpr strain. J Neuroimmunol 28:39–52PubMedCrossRefGoogle Scholar
  78. 78.
    Ballok DA, Ma X, Denburg JA, Arsenault L, Sakic B (2006) Ibuprofen fails to prevent brain pathology in a model of neuropsychiatric lupus. J Rheumatol 33(11):2199–2213PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ballok DA, Millward JM, Sakic B (2003) Neurodegeneration in autoimmune MRL-lpr mice as revealed by Fluoro Jade B staining. Brain Res 964(2):200–210PubMedCrossRefGoogle Scholar
  80. 80.
    Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85(6):573–585PubMedCrossRefGoogle Scholar
  81. 81.
    Gerber J, Raivich G, Wellmer A, Noeske C, Kunst T, Werner A, Bruck W, Nau R (2001) A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neuropathol 101(5):499–508PubMedGoogle Scholar
  82. 82.
    Alexander EL, Alexander GE (1983) Aseptic meningoencephalitis in primary Sjogren's syndrome. Neurology 33:593–598PubMedCrossRefGoogle Scholar
  83. 83.
    Auer RN, Wieloch T, Olsson Y, Siesjo BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol 64(3):177–191PubMedCrossRefGoogle Scholar
  84. 84.
    Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sakaguchi S, Ishii Y (1997) Specific changes in human brain after hypoglycemic injury. Stroke 28(3):584–587PubMedCrossRefGoogle Scholar
  85. 85.
    Denenberg VH, Sherman GF, Rosen GD, Morrison L, Behan PO, Galaburda AM (1992) A behavior profile of the MRL/Mp lpr/lpr mouse and its association with hydrocephalus. Brain Behav Immun 6:40–49PubMedCrossRefGoogle Scholar
  86. 86.
    Alexander JJ, Zwingmann C, Quigg R (2005) MRL/lpr mice have alterations in brain metabolism as shown with [(1)H-(13)C] NMR spectroscopy. Neurochem Int 47(1–2):143–151PubMedCrossRefGoogle Scholar
  87. 87.
    Alexander JJ, Bao L, Jacob A, Kraus DM, Holers VM, Quigg RJ (2003) Administration of the soluble complement inhibitor, Crry-Ig, reduces inflammation and aquaporin 4 expression in lupus cerebritis. Biochim Biophys Acta 1639(3):169–176PubMedCrossRefGoogle Scholar
  88. 88.
    Hampton DW, Seitz A, Chen P, Heber-Katz E, Fawcett JW (2004) Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience 127(4):821–832PubMedCrossRefGoogle Scholar
  89. 89.
    Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170PubMedCrossRefGoogle Scholar
  90. 90.
    Ballok DA, Earls AM, Krasnik C, Hoffman SA, Sakic B (2004) Autoimmune-induced damage of the midbrain dopaminergic system in lupus-prone mice. J Neuroimmunol 152(1–2):83–97PubMedCrossRefGoogle Scholar
  91. 91.
    Hess DC (1997) Cerebral lupus vasculopathy. Mechanisms and clinical relevance. Ann N Y Acad Sci 823:154–168PubMedCrossRefGoogle Scholar
  92. 92.
    Baraczka K, Nekam K, Pozsonyi T, Jakab L, Szongoth M, Sesztak M (2001) Concentration of soluble adhesion molecules (sVCAM-1, sICAM-1 and sL-selectin) in the cerebrospinal fluid and serum of patients with multiple sclerosis and systemic lupus erythematosus with central nervous involvement. Neuroimmunomodulation 9(1):49–54PubMedCrossRefGoogle Scholar
  93. 93.
    Chinn RJS, Wilkinson ID, Hallcraggs MA, Paley MNJ, Shorthall E, Carter S, Kendall BE, Isenberg DA, Newman SP, Harrison MJG (1997) Magnetic resonance imaging of the brain and cerebral proton spectroscopy in patients with systemic lupus erythematosus. Arthritis Rheum 40(1):36–46PubMedCrossRefGoogle Scholar
  94. 94.
    Rocca MA, Agosta F, Mezzapesa DM, Ciboddo G, Falini A, Comi G, Filippi M (2006) An fMRI study of the motor system in patients with neuropsychiatric systemic lupus erythematosus. Neuroimage 30(2):478–484PubMedCrossRefGoogle Scholar
  95. 95.
    Sled JG, Spring S, van Eede M, Lerch JP, Ullal S, Sakic B (2009) Time course and nature of brain atrophy in the MRL mouse model of central nervous system lupus. Arthritis Rheum 60(6):1764–1774PubMedCrossRefGoogle Scholar
  96. 96.
    Sakic B, Szechtman H, Denburg JA, Gorny G, Kolb B, Whishaw IQ (1998) Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J Neuroimmunol 87(1–2):162–170PubMedCrossRefGoogle Scholar
  97. 97.
    Maric D, Millward JM, Ballok DA, Szechtman H, Barker JL, Denburg JA, Sakic B (2001) Neurotoxic properties of cerebrospinal fluid from behaviorally impaired autoimmune mice. Brain Res 920(1–2):183–193PubMedCrossRefGoogle Scholar
  98. 98.
    Kovac AD, Grammig J, Mahlo J, Steiner B, Roth K, Nitsch R, Bechmann I (2002) Comparison of neuronal density and subfield sizes in the hippocampus of CD95L-deficient (gld), CD95-deficient (lpr) and nondeficient mice. Eur J Neurosci 16(1):159–163PubMedCrossRefGoogle Scholar
  99. 99.
    Sakic B, Maric I, Koeberle PD, Millward JM, Szechtman H, Maric D, Denburg JA (2000) Increased TUNEL-staining in brains of autoimmune Fas-deficient mice. J Neuroimmunol 104(2):147–154PubMedCrossRefGoogle Scholar
  100. 100.
    Yamashita T, Ninomiya M, Hernandez AP, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26(24):6627–6636PubMedCrossRefGoogle Scholar
  101. 101.
    Sakic B, Kirkham DL, Ballok DA, Mwanjewe J, Fearon IM, Macri J, Yu G, Sidor MM, Denburg JA, Szechtman H, Lau J, Ball AK, Doering LC (2005) Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease. J Neuroimmunol 169(1–2):68–85PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lechner O, Dietrich H, Oliveira dos SA, Wiegers GJ, Schwarz S, Harbutz M, Herold M, Wick G (2000) Altered circadian rhythms of the stress hormone and melatonin response in lupus-prone MRL/MP-fas(Ipr) mice. J Autoimmun 14(4):325–333PubMedCrossRefGoogle Scholar
  103. 103.
    Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16(3):233–238PubMedCrossRefGoogle Scholar
  104. 104.
    Anderson KK, Ballok DA, Prasad N, Szechtman H, Sakic B (2006) Impaired response to amphetamine and neuronal degeneration in the nucleus accumbens of autoimmune MRL-lpr mice. Behav Brain Res 166:32–38PubMedCrossRefGoogle Scholar
  105. 105.
    Brey RL, Cote S, Barohn R, Jackson C, Crawley R, Teale JM (1995) Model for the neuromuscular complications of systemic lupus erythematosus. Lupus 4(3):209–212PubMedCrossRefGoogle Scholar
  106. 106.
    Loheswaran G, Stanojcic M, Xu L, Sakic B (2010) Autoimmunity as a principal pathogenic factor in the refined model of neuropsychiatric lupus. Clin Exp Neuroimmunol 1:141–152CrossRefGoogle Scholar
  107. 107.
    How A, Dent PB, Liao SK, Denburg JA (1985) Antineuronal antibodies in neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 28:789–795PubMedCrossRefGoogle Scholar
  108. 108.
    Williams GW, Bluestein HG, Steinberg AD (1981) Brain-reactive lymphocytotoxic antibody in the cerebrospinal fluid of patients with systemic lupus erythematosus: correlation with central nervous system involvement. Clin Immunol Immunopathol 18(1):126–132PubMedCrossRefGoogle Scholar
  109. 109.
    Bluestein HG, Zvaifler NJ (1976) Brain-reactive lymphocytotoxic antibodies in the serum of patients with systemic lupus erythematosus. J Clin Invest 57(2):509–516PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bresnihan B, Hohmeister R, Cutting J, Travers RL, Waldburger M, Black C, Jones T, Hughes GR (1979) The neuropsychiatric disorder in systemic lupus erythematosus: evidence for both vascular and immune mechanisms. Ann Rheum Dis 38(4):301–306PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Golombek SJ, Graus F, Elkon KB (1986) Autoantibodies in the cerebrospinal fluid of patients with systemic lupus erythematosus. Arthritis Rheum 29(9):1090–1097PubMedCrossRefGoogle Scholar
  112. 112.
    Quismorio FP, Friou GJ (1972) Antibodies reactive with neurons in SLE patients with neuropsychiatric manifestations. Int Arch Allergy Appl Immunol 43:740–748PubMedCrossRefGoogle Scholar
  113. 113.
    DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B (2001) A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7(11):1189–1193PubMedCrossRefGoogle Scholar
  114. 114.
    Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, Uema T, Takeda M, Amino N (2003) Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol 141(1–2):155–164PubMedCrossRefGoogle Scholar
  115. 115.
    Zandman-Goddard G, Chapman J, Shoenfeld Y (2007) Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum 36(5):297–315PubMedCrossRefGoogle Scholar
  116. 116.
    Isshi K, Hirohata S (1996) Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 39(9):1483–1490PubMedCrossRefGoogle Scholar
  117. 117.
    Denburg SD, Denburg JA (2003) Cognitive dysfunction and antiphospholipid antibodies in systemic lupus erythematosus. Lupus 12(12):883–890PubMedCrossRefGoogle Scholar
  118. 118.
    Hanly JG, Urowitz MB, Siannis F, Farewell V, Gordon C, Bae SC, Isenberg D, Dooley MA, Clarke A, Bernatsky S, Gladman D, Fortin PR, Manzi S, Steinsson K, Bruce IN, Ginzler E, Aranow C, Wallace DJ, Ramsey-Goldman R, van Vollenhoven R, Sturfelt G, Nived O, Sanchez-Guerrero J, Alarcon GS, Petri M, Khamashta M, Zoma A, Font J, Kalunian K, Douglas J, Qi Q, Thompson K, Merrill JT (2008) Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum 58(3):843–853PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, Diamond B, Volpe BT (2004) Cognition and immunity; antibody impairs memory. Immunity 21(2):179–188PubMedCrossRefGoogle Scholar
  120. 120.
    Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B (2006) Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci U S A 103(3):678–683PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kowal C, DeGiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, Diamond B (2006) Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 103(52):19854–19859PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ndhlovu M, Preuss BE, Dengjel J, Stevanovic S, Weiner SM, Klein R (2011) Identification of alpha-tubulin as an autoantigen recognized by sera from patients with neuropsychiatric systemic lupus erythematosus. Brain Behav Immun 25(2):279–285PubMedCrossRefGoogle Scholar
  123. 123.
    Colasanti T, Delunardo F, Margutti P, Vacirca D, Piro E, Siracusano A, Ortona E (2009) Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus. J Neuroimmunol 212(1–2):3–9PubMedCrossRefGoogle Scholar
  124. 124.
    Lefranc D, Launay D, Dubucquoi S, de SJ, Dussart P, Vermersch M, Hachulla E, Hatron PY, Vermersch P, Mouthon L, Prin L (2007) Characterization of discriminant human brain antigenic targets in neuropsychiatric systemic lupus erythematosus using an immunoproteomic approach. Arthritis Rheum 56(10):3420–3432PubMedCrossRefGoogle Scholar
  125. 125.
    Williams RC Jr, Sugiura K, Tan EM (2004) Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 50(4):1239–1247PubMedCrossRefGoogle Scholar
  126. 126.
    Yoshio T, Onda K, Nara H, Minota S (2006) Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 54(2):675–678PubMedCrossRefGoogle Scholar
  127. 127.
    Arinuma Y, Yanagida T, Hirohata S (2008) Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 58(4):1130–1135PubMedCrossRefGoogle Scholar
  128. 128.
    Stanojcic M, Loheswaran G, Xu L, Hoffman SA, Sakic B (2010) Intrathecal antibodies and brain damage in autoimmune MRL mice. Brain Behav Immun 24:289–297PubMedCrossRefGoogle Scholar
  129. 129.
    Hoffman SA, Madsen CS (1990) Brain specific autoantibodies in murine models of systemic lupus erythematosus. J Neuroimmunol 30:229–237PubMedCrossRefGoogle Scholar
  130. 130.
    Hoffman SA, Arbogast DN, Ford PM, Shucard DW, Harbeck RJ (1987) Brain-reactive autoantibody levels in the sera of ageing autoimmune mice. Clin Exp Immunol 70:74–83PubMedPubMedCentralGoogle Scholar
  131. 131.
    Crimando J, Hoffman SA (1992) Detection of brain-reactive autoantibodies in the sera of autoimmune mice using ELISA. J Immunol Methods 149:87–95PubMedCrossRefGoogle Scholar
  132. 132.
    Sakic B, Szechtman H, Denburg SD, Carbotte RM, Denburg JA (1993) Brain-reactive antibodies and behavior of autoimmune MRL-lpr mice. Physiol Behav 54:1025–1029PubMedCrossRefGoogle Scholar
  133. 133.
    Gao HX, Sanders E, Tieng AT, Putterman C (2010) Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J Neuroimmunol 229(1–2):112–122PubMedCrossRefGoogle Scholar
  134. 134.
    Gao HX, Campbell SR, Cui MH, Zong P, Hee-Hwang J, Gulinello M, Putterman C (2009) Depression is an early disease manifestation in lupus-prone MRL/lpr mice. J Neuroimmunol 207(1–2):45–56PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hoffman SA, Sakic B (2008) Autoimmunity and brain dysfunction. In: Siegel A, Zalcman S (eds) The neuroimmunological basis of behavior and mental disorders. Springer-Verlag, Boston, MAGoogle Scholar
  136. 136.
    Meroni PL, Tincani A, Sepp N, Raschi E, Testoni C, Corsini E, Cavazzana I, Pellegrini S, Salmaggi A (2003) Endothelium and the brain in CNS lupus. Lupus 12(12):919–928PubMedCrossRefGoogle Scholar
  137. 137.
    Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T, Kishimoto T (1991) Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol 3:273–278PubMedCrossRefGoogle Scholar
  138. 138.
    Singh AK, Lebedeva TV (1994) Interleukin-1 contributes to high level IgG production in the murine MRL/lpr lupus model. Immunol Invest 23:281–292PubMedCrossRefGoogle Scholar
  139. 139.
    Boswell JM, Yui MA, Endres S, Burt DW, Kelley VE (1988) Novel and enhanced IL-1 gene expression in autoimmune mice with lupus. J Immunol 141:118–124PubMedGoogle Scholar
  140. 140.
    Sakic B, Szechtman H, Braciak TA, Richards CD, Gauldie J, Denburg JA (1997) Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res Bull 44(2):155–165PubMedCrossRefGoogle Scholar
  141. 141.
    Kwant A, Sakic B (2004) Behavioral effects of infection with interferon-gamma adenovector. Behav Brain Res 151(1–2):73–82PubMedCrossRefGoogle Scholar
  142. 142.
    Sakic B, Szechtman H, Gauldie J, Denburg JA (2001) Behavioral effects of infection with IL-6 adenovector. Brain Behav Immun 15(1):25–42PubMedCrossRefGoogle Scholar
  143. 143.
    Marshall D, Dangerfield JP, Bhatia VK, Larbi KY, Nourshargh S, Haskard DO (2003) MRL/lpr lupus-prone mice show exaggerated ICAM-1-dependent leucocyte adhesion and transendothelial migration in response to TNF-alpha. Rheumatology (Oxford) 42(8):929–934CrossRefGoogle Scholar
  144. 144.
    Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179(1–2):53–56PubMedCrossRefGoogle Scholar
  145. 145.
    Banks WA, Kastin AJ, Gutierrez EG (1993) Interleukin-1 alpha in blood has direct access to cortical brain cells. Neurosci Lett 163(1):41–44PubMedCrossRefGoogle Scholar
  146. 146.
    Gutierrez EG, Banks WA, Kastin AJ (1993) Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47(2):169–176PubMedCrossRefGoogle Scholar
  147. 147.
    Tsai CY, Wu TH, Tsai ST, Chen KH, Thajeb P, Lin WM, Yu HS, Yu CL (1994) Cerebrospinal fluid interleukin-6, prostaglandin E2 and autoantibodies in patients with neuropsychiatric systemic lupus erythematosus and central nervous system infections. Scand J Rheumatol 23(2):57–63PubMedCrossRefGoogle Scholar
  148. 148.
    Svenungsson E, Andersson M, Brundin L, van Vollenhoven R, Khademi M, Tarkowski A, Greitz D, Dahlstrom M, Lundberg I, Klareskog L, Olsson T (2001) Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis 60(4):372–379PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hayley S, Merali Z, Anisman H (2003) Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness. Stress 6(1):19–32PubMedCrossRefGoogle Scholar
  150. 150.
    Hu Y, Dietrich H, Herold M, Heinrich PC, Wick G (1993) Disturbed immuno-endocrine communication via the hypothalamo- pituitary-adrenal axis in autoimmune disease. Int Arch Allergy Immunol 102:232–241PubMedCrossRefGoogle Scholar
  151. 151.
    Rivier C, Rivest S (1993) Mechanisms mediating the effects of cytokines on neuroendocrine functions in the rat. In: Chadwick D, Marsh J, Ackrill K (eds) Corticotropin-releasing factor, vol Clayton Foundation Laboratories for Peptide Biology, Salk Institute, San Diego, CA 92128, Ciba Foundation Symposium, vol 172. John Wiley & Sons, Chichester, pp 204–225Google Scholar
  152. 152.
    Spangelo BL, Gorospe WC (1995) Role of the cytokines in the neuroendocrine-immune system axis. Front Neuroendocrinol 16(1):1–22PubMedCrossRefGoogle Scholar
  153. 153.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Del Rey A, Besedovsky HO (2000) The cytokine-HPA axis circuit contributes to prevent or moderate autoimmune processes. Z Rheumatol 59(Suppl 2):II/31–II/35Google Scholar
  155. 155.
    Lorton D, Lubahn C, Bellinger DL (2003) Potential use of drugs that target neural-immune pathways in the treatment of rheumatoid arthritis and other autoimmune diseases. Curr Drug Targets Inflamm Allergy 2(1):1–30PubMedCrossRefGoogle Scholar
  156. 156.
    Spangelo BL, Judd AM, Call GB, Zumwalt J, Gorospe WC (1995) Role of the cytokines in the hypothalamic-pituitary-adrenal and gonadal axes. Neuroimmunomodulation 2(5):299–312PubMedCrossRefGoogle Scholar
  157. 157.
    Spangelo BL, Judd AM, Isakson PC, MacLeod RM (1989) Interleukin-6 stimulates anterior pituitary hormone release in vitro. Endocrinology 125(1):575–577PubMedCrossRefGoogle Scholar
  158. 158.
    Shanks N, Moore PM, Perks P, Lightman SL (1999) Alterations in hypothalamic-pituitary-adrenal function correlated with the onset of murine SLE in MRL +/+ and lpr/lpr mice. Brain Behav Immun 13(4):348–360PubMedCrossRefGoogle Scholar
  159. 159.
    Sakic B, Laflamme N, Crnic LS, Szechtman H, Denburg JA, Rivest S (1999) Reduced corticotropin-releasing factor and enhanced vasopressin gene expression in brains of mice with autoimmunity-induced behavioral dysfunction. J Neuroimmunol 96(1):80–91PubMedCrossRefGoogle Scholar
  160. 160.
    McEwen BS (1999) Stress and the aging hippocampus. Front Neuroendocrinol 20(1):49–70PubMedCrossRefGoogle Scholar
  161. 161.
    Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531(1–2):225–231PubMedCrossRefGoogle Scholar
  162. 162.
    Ballok DA, Sakic B (2008) Purine receptor antagonist modulates serology and affective behaviors in lupus-prone mice: evidence of autoimmune-induced pain? Brain Behav Immun 22(8):1208–1216PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935PubMedCrossRefGoogle Scholar
  164. 164.
    Peress NS, Roxburgh VA, Gelfand MC (1981) Binding sites for immune components in human choroid plexus. Arthritis Rheum 24(3):520–526PubMedCrossRefGoogle Scholar
  165. 165.
    Schwartz MM, Roberts JL (1983) Membranous and vascular choroidopathy: two patterns of immune deposits in systemic lupus erythematosus. Clin Immunol Immunopathol 29(3):369–380PubMedCrossRefGoogle Scholar
  166. 166.
    Reilly CM, Oates JC, Cook JA, Morrow JD, Halushka PV, Gilkeson GS (2000) Inhibition of mesangial cell nitric oxide in MRL/lpr mice by prostaglandin J2 and proliferator activation receptor-gamma agonists. J Immunol 164(3):1498–1504PubMedCrossRefGoogle Scholar
  167. 167.
    O’Sullivan FX, Vogelweid CM, Beschwilliford CL, Walker SE (1995) Differential effects of CD4(+) T cell depletion on inflammatory central nervous system disease, arthritis and sialadenitis in MRL/lpr mice. J Autoimmun 8:163–175PubMedCrossRefGoogle Scholar
  168. 168.
    Jacob A, Hack B, Bai T, Brorson JR, Quigg RJ, Alexander JJ (2010) Inhibition of C5a receptor alleviates experimental CNS lupus. J Neuroimmunol 221(1–2):46–52PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Sakic B, Lacosta S, Denburg J, Szechtman H (2002) Altered neurotransmission in brains of autoimmune mice: pharmacological and neurochemical evidence. J Neuroimmunol 129(1–2):84–96PubMedCrossRefGoogle Scholar
  170. 170.
    Chun S, McEvilly R, Foster JA, Sakic B (2008) Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Mol Psychiatry 13(11):1043–1053PubMedCrossRefGoogle Scholar
  171. 171.
    Wen J, Doerner J, Chalmers S, Stock A, Wang H, Gullinello M, Shlomchik MJ, Putterman C (2016) B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus. J Neuroinflammation 13(1):73. https://doi.org/10.1186/s12974-016-0537-3 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Loheswaran G, Kapadia M, Gladman M, Pulapaka S, Xu L, Stanojcic M, Sakic B (2013) Altered neuroendocrine status at the onset of CNS lupus-like disease. Brain Behav Immun 32:86–93PubMedCrossRefGoogle Scholar
  173. 173.
    Stock AD, Wen J, Doerner J, Herlitz LC, Gulinello M, Putterman C (2015) Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. J Neuroinflammation 12:205. https://doi.org/10.1186/s12974-015-0423-4 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Denenberg VH, Mobraaten LE, Sherman GF, Morrison L, Schrott LM, Waters NS, Rosen GD, Behan PO, Galaburda AM (1991) Effects of the autoimmune uterine/maternal environment upon cortical ectopias, behavior and autoimmunity. Brain Res 563:114–122PubMedCrossRefGoogle Scholar
  175. 175.
    Lee JY, Huerta PT, Zhang J, Kowal C, Bertini E, Volpe BT, Diamond B (2009) Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat Med 15(1):91–96PubMedCrossRefGoogle Scholar
  176. 176.
    Li Y, Eskelund AR, Zhou H, Budac DP, Sanchez C, Gulinello M (2015) Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). Int J Mol Sci 16(7):15150–15171. https://doi.org/10.3390/ijms160715150 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, Baruch K, Deczkowska A, Gulinello M, Schwartz M, Burkly LC, Putterman C (2015) TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun 60:40–50. https://doi.org/10.1016/j.jaut.2015.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C (2016) Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun 54:27–37. https://doi.org/10.1016/j.bbi.2015.12.017 CrossRefPubMedGoogle Scholar
  179. 179.
    Marcinko K, Parsons T, Lerch JP, Sled JG, Sakic B (2013) Effects of prolonged treatment with memantine in the MRL model of CNS lupus. Clin Exp Neuroimmunol 3(3):116–128CrossRefGoogle Scholar
  180. 180.
    Kapadia M, Zhao H, Ma D, Sakic B (2017) Sustained immunosuppression alters olfactory function in the MRL model of CNS lupus. J Neuroimmune Pharmacol 12(3):555–564. https://doi.org/10.1007/s11481-017-9745-6 CrossRefPubMedGoogle Scholar
  181. 181.
    Mahajan SD, Tutino VM, Redae Y, Meng H, Siddiqui A, Woodruff TM, Jarvis JN, Hennon T, Schwartz S, Quigg RJ, Alexander JJ (2016) C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus. Immunology 148(4):407–419. https://doi.org/10.1111/imm.12619 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Chalmers SA, Wen J, Shum J, Doerner J, Herlitz L, Putterman C (2017) CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin Immun (Orlando, Fla) 185:100–108. https://doi.org/10.1016/j.clim.2016.08.019 CrossRefGoogle Scholar
  183. 183.
    Kim A, Feng P, Ohkuri T, Sauers D, Cohn ZJ, Chai J, Nelson T, Bachmanov AA, Huang L, Wang H (2012) Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease. PLoS One 7(4):e35588PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B (2012) Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res 234(2):303–311PubMedCrossRefGoogle Scholar
  185. 185.
    Stanojcic M, Burstyn-Cohen T, Nashi N, Lemke G, Sakic B (2009) Disturbed distribution of proliferative brain cells during lupus-like disease. Brain Behav Immun 23(7):1003–1013PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral NeurosciencesMcMaster UniversityHamiltonCanada

Personalised recommendations