Mouse Testing Methods in Psychoneuroimmunology 2.0: Measuring Behavioral Responses

  • Albert E. Towers
  • Jason M. York
  • Tracy Baynard
  • Stephen J. Gainey
  • Gregory G. FreundEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1781)


The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer’s. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.

Key words

Mouse Maze Exploration Brain based Biobehaviors Memory Motor activity Anhedonia 



This research was supported by the National Institutes of Health (DK064862, NS058525, and AA019357 to G.G.F.), USDA National Institute of Food and Agriculture, Hatch project #ILLU971-32.


  1. 1.
    Ader R (2000) On the development of psychoneuroimmunology. Eur J Pharmacol 405(1–3):167–176PubMedCrossRefGoogle Scholar
  2. 2.
    Maier SF, Watkins LR, Fleshner M (1994) Psychoneuroimmunology—the interface between behavior, brain and immunity. Am Psychol 49(12):1004–1017PubMedCrossRefGoogle Scholar
  3. 3.
    Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132PubMedCrossRefGoogle Scholar
  4. 4.
    Kelley KW et al (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17:S112–S118PubMedCrossRefGoogle Scholar
  5. 5.
    Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22:129–139PubMedCrossRefGoogle Scholar
  6. 6.
    Dantzer R (2004) Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson DR et al (2007) Acute hypoxia activates the neuroimmune system, which diabetes exacerbates. J Neurosci 27(5):1161–1166PubMedCrossRefGoogle Scholar
  8. 8.
    Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234PubMedCrossRefGoogle Scholar
  9. 9.
    Gibertini M (1998) Cytokines and cognitive behavior. Neuroimmunomodulation 5:160–165PubMedCrossRefGoogle Scholar
  10. 10.
    Wingfield JC et al (2006) Contexts and ethology of vertebrate aggression: implications for the evolution of hormone-behavior interactions. In: Nelson RJ (ed) Biology of aggression. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lavin DN et al (2011) Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents. Obesity 19(8):1586–1594PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yi B, Sahn JJ, Ardestani PM et al (2017) Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J Neurochem 140:561–575. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Paul RH et al (2000) Fatigue and its impact on patients with Myasthenia Gravis. Muscle Nerve 23(9):1402–1406PubMedCrossRefGoogle Scholar
  15. 15.
    Carmichael MD et al (2006) Role of brain IL-1β on fatigue after exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 291:R1344–R1348PubMedCrossRefGoogle Scholar
  16. 16.
    Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tanila H (2017) Testing cognitive functions in rodent disease models: present pitfalls and future perspectives. Behav Brain Res.
  18. 18.
    Warren EJ et al (1997) Coincidental changes in behavior and plasma cortisol in unrestrained pigs after intracerebroventricular injection of tumor necrosis factor-α. Endocrinology 138(6):2365–2371PubMedCrossRefGoogle Scholar
  19. 19.
    Antonson AM, Radlowski EC, Lawson MA et al (2017) Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation. Brain Behav Immun 59:300–312. CrossRefPubMedGoogle Scholar
  20. 20.
    Rytych JL, Elmore MRP, Burton MD et al (2012) Early life iron deficiency impairs spatial cognition in neonatal piglets. J Nutr 142:2050–2056. CrossRefPubMedGoogle Scholar
  21. 21.
    Grippo AJ (2009) Mechanisms underlying altered mood and cardiovascular dysfunction: the value of neurobiological and behavioral research in animal models. Neurosci Biobehav Rev 33(2):171–180PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson A, Hamilton TJ (2017) Modafinil decreases anxiety-like behaviour in zebrafish. PeerJ 5:e2994. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Crawley JN (2003) Behavioral phenotyping of rodents. Comp Med 53(2):140–146PubMedGoogle Scholar
  24. 24.
    Shigemura N et al (2004) Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145(2):839–847PubMedCrossRefGoogle Scholar
  25. 25.
    Rodgers RJ, Cole JC (1993) Influence of social isolation, gender, strain and prior novelty on plus-maze behaviour in mice. Physiol Behav 54(4):729–736PubMedCrossRefGoogle Scholar
  26. 26.
    Palanza P, Gioiosa L, Parmigiani S (2001) Social stress in mice: gender differences and effects of estrous cycle and social dominance. Physiol Behav 73:411–420PubMedCrossRefGoogle Scholar
  27. 27.
    Lightfoot JT et al (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276PubMedCrossRefGoogle Scholar
  28. 28.
    Basterfield L, Lumley LK, Mathers JC (2009) Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int J Obes (Lond) 33:212–218CrossRefGoogle Scholar
  29. 29.
    Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509:282–283. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hawkley LC, Cacioppo JT (2004) Stress and the aging immune system. Brain Behav Immun 18(2):114–119PubMedCrossRefGoogle Scholar
  31. 31.
    Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Martin SA et al (2011) Voluntary-wheel exercise training attenuates the visceral adipose, but not central, inflammatory response to LPS in aged C57BL/6J mice. Brain Behav Immun 25(S2):S217–S218. (Abstract)CrossRefGoogle Scholar
  33. 33.
    Ma H et al (2010) Effects of diet-induced obesity and voluntary wheel running on bone properties in young male C57BL/6J mice. Calcif Tissue Int 86:411–419PubMedCrossRefGoogle Scholar
  34. 34.
    Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47(4):364–369PubMedCrossRefGoogle Scholar
  35. 35.
    Tuli JS, Smith JA, Morton DB (1995) Stress measurements in mice after transportation. Lab Anim 29:132–138PubMedCrossRefGoogle Scholar
  36. 36.
    Jennings M et al (1998) Refining rodent husbandry: the mouse. Report of the Rodent Refinement Working Party. Lab Anim 32(3):233–259PubMedCrossRefGoogle Scholar
  37. 37.
    Clénet F et al (2006) Light/dark cycle manipulation influences mice behavior in the elevated plus maze. Behav Brain Res 166(1):140–149PubMedCrossRefGoogle Scholar
  38. 38.
    Ciarleglio CM et al (2009) Population encoding by circadian clock neurons organizes circadian behavior. J Neurosci 29(6):1670–1676PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Goulding EH et al (2008) A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci U S A 105(52):20575–20582PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    National Research Council of the National Academies (2011) Guide for the care and use of laboratory animals. National Academy of Sciences, Washington, DCGoogle Scholar
  41. 41.
    Buchanan JB et al (2008) Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology 33(6):755–765PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ajarem JS, Safar E, Ahmad M (2011) Effect of ethanol and thermal stresses on the social behavior of male mice. Asian J Biol Sci 4:362–368CrossRefGoogle Scholar
  43. 43.
    Goshen I et al (2003) The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy-induced adrenocorticotropic hormone hypersecretion. Endocrinology 144:4453–4458PubMedCrossRefGoogle Scholar
  44. 44.
    Naff KA et al (2007) Noise produced by vacuuming exceeds the hearing thresholds of C57BL/6 and CD1 mice. J Am Assoc Lab Anim Sci 46(1):52–57PubMedGoogle Scholar
  45. 45.
    Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9(4):253–275PubMedCrossRefGoogle Scholar
  46. 46.
    Beishuizen A, Thijs LG (2003) Review: endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Innate Immun 9(1):3–24Google Scholar
  47. 47.
    Pfaff J (1974) Noise as an environmental problem in the animal house. Lab Anim 8:347–354PubMedCrossRefGoogle Scholar
  48. 48.
    Arakawa H, Cruz S, Deak T (2011) From models to mechanisms: odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci Biobehav Rev 35(9):1916–1928PubMedCrossRefGoogle Scholar
  49. 49.
    Alves GJ et al (2010) Odor cues from tumor-bearing mice induces neuroimmune changes. Behav Brain Res 214:357–367PubMedCrossRefGoogle Scholar
  50. 50.
    Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research—issues to consider for rodents and rabbits. ILAR J 47(4):283–293PubMedCrossRefGoogle Scholar
  51. 51.
    Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43(6):42–51PubMedGoogle Scholar
  52. 52.
    Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826PubMedCrossRefGoogle Scholar
  53. 53.
    Sun L, Min L, Zhou H et al (2017) Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats. Behav Brain Res 333:258–266. CrossRefPubMedGoogle Scholar
  54. 54.
    Koike H et al (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202(1):114–121PubMedCrossRefGoogle Scholar
  55. 55.
    Ma X et al (2011) Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS One 6(6):e20955PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Avitsur R, Stark JL, Sheridan JF (2001) Social stress induces glucocorticoid resistance in subordinate animals. Horm Behav 39(4):247–257PubMedCrossRefGoogle Scholar
  57. 57.
    Pardon M et al (2004) Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding. Eur J Neurosci 20(4):1033–1050PubMedCrossRefGoogle Scholar
  58. 58.
    Van De Weerd HA et al (1994) Strain specific behavioural response to environmental enrichment in the mouse. J Exp Anim Sci 36:117–127PubMedGoogle Scholar
  59. 59.
    Olsson AS, Dahlborn K (2001) Improving housing conditions for laboratory mice: a review of ‘environmental enrichment’. Lab Anim 36:243–270CrossRefGoogle Scholar
  60. 60.
    Kent S et al (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28PubMedCrossRefGoogle Scholar
  61. 61.
    Dantzer R et al (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91:363–368CrossRefGoogle Scholar
  62. 62.
    Park SE et al (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Krzyszton CP et al (2008) Exacerbated fatigue and motor deficits in interleukin-10-deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol 295(4):R1109–R1114PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pecaut MJ et al (2002) Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotarod, and acoustic startle. Cogn Affect Behav Neurosci 2(4):329–340PubMedCrossRefGoogle Scholar
  65. 65.
    Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96(6):1000–1006CrossRefGoogle Scholar
  66. 66.
    Bluthé RM, Dantzer R, Kelley KW (1991) Interleukin-1 mediates behavioural but not metabolic effects of tumor necrosis factor α in mice. Eur J Pharmacol 209:281–283PubMedCrossRefGoogle Scholar
  67. 67.
    Bluthé RM, Schoenen J, Dantzer R (1990) Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res 519:150–157PubMedCrossRefGoogle Scholar
  68. 68.
    Dantzer R, Bluthé RM, Kelley KW (1991) Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Res 557:115–120PubMedCrossRefGoogle Scholar
  69. 69.
    Abraham J et al (2008) Aging sensitizes mice to behavioral deficits induced by central HIV-1 gp120. Neurobiol Aging 29:614–621PubMedCrossRefGoogle Scholar
  70. 70.
    Sherry CL et al (2009) Behavioral recovery from acute hypoxia is reliant on leptin. Brain Behav Immun 23(2):169–175PubMedCrossRefGoogle Scholar
  71. 71.
    Cao JL et al (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30(49):16453–16458PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Basso AM et al (2009) Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 198:83–90PubMedCrossRefGoogle Scholar
  73. 73.
    York JM, Blevins NA, McNeil LK, Freund GG (2013) Mouse short- and long-term locomotor activity analyzed by video tracking software. J Vis Exp:e50252–e50252.
  74. 74.
    Buchanan JB, Sparkman NL, Johnson RW (2010) A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 7:82PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fanelli MT, Kaplan ML (1978) Effects of high fat and high carbohydrate diets on the body composition and oxygen consumption of ob/ob mice. J Nutr 108(9):1491–1500PubMedCrossRefGoogle Scholar
  76. 76.
    Jones BJ, Roberts DJ (1968) The quantitative measurement of motor incoordination in naïve mice using and accelerating rotarod. J Pharm Pharmacol 20(4):302–304PubMedCrossRefGoogle Scholar
  77. 77.
    Tarantino LM, Gould TJ, Druhan JP, Bucan M (2000) Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm Genome 11:555–564PubMedCrossRefGoogle Scholar
  78. 78.
    Dang MT et al (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci U S A 103(41):15254–15259PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Carter RJ, Morton AJ, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12PubMedGoogle Scholar
  80. 80.
    Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519–533PubMedCrossRefGoogle Scholar
  81. 81.
    Deacon RMJ (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1(1):118–121PubMedCrossRefGoogle Scholar
  82. 82.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cryan JF, Holmes A (2005) The ascent of mouse: advances in modeling human depression and anxiety. Nat Rev Drug Discov 4:775–790PubMedCrossRefGoogle Scholar
  84. 84.
    Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New YorkCrossRefGoogle Scholar
  85. 85.
    Petit-Demouliere B, Chenu F, Bourin M (2004) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255CrossRefGoogle Scholar
  86. 86.
    Avgustinovich DF, Lipina TV, Bondar NP et al (2000) Features of the genetically defined anxiety in mice. Behav Genet 30:101–109PubMedCrossRefGoogle Scholar
  87. 87.
    Moon ML, Joesting JJ, Blevins NA et al (2015) IL-4 knock out mice display anxiety-like behavior. Behav Genet 45:451–460. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Muralidharan A, Kuo A, Jacob M et al (2016) Comparison of burrowing and stimuli-evoked pain behaviors as end-points in rat models of inflammatory pain and peripheral neuropathic pain. Front Behav Neurosci 10:88. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Tonelli LH et al (2009) Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun 23:784–793PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:e1088Google Scholar
  91. 91.
    Fromm L et al (2004) Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr 23(5):529S–533SPubMedCrossRefGoogle Scholar
  92. 92.
    Shepherd JK et al (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–64CrossRefGoogle Scholar
  93. 93.
    Heisler LK et al (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor knockout mutant mice. Proc Natl Acad Sci U S A 95:15049–15054PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ennaceur A (2014) Tests of unconditioned anxiety — pitfalls and disappointments. Physiol Behav 135:55–71. CrossRefPubMedGoogle Scholar
  95. 95.
    Hascoë M, Bourin M (2009) The mouse light–dark box test. In: Gould T (ed) Mood and anxiety related phenotypes in mice, Neuromethods, vol 42. Humana Press, Totowa, NJ. CrossRefGoogle Scholar
  96. 96.
    Takao K, Miyakawa T (2006) Light/dark transition test for mice. J Vis Exp:e104–e104.
  97. 97.
    Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4–5):571–625PubMedCrossRefGoogle Scholar
  98. 98.
    Porsolt RD et al (2001) Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci:8.10A.1–8.10A.10Google Scholar
  99. 99.
    Lad HV et al (2007) Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mamm Genome 18:482–491PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Steru L et al (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370CrossRefGoogle Scholar
  101. 101.
    Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23(5):238–245PubMedCrossRefGoogle Scholar
  102. 102.
    Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants ¬reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl) 182:335–344CrossRefGoogle Scholar
  103. 103.
    Moreau M et al (2008) Innoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Udo H et al (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28(53):14522–14536PubMedCrossRefGoogle Scholar
  105. 105.
    Hédou G et al (2001) An automated analysis of rat behavior in the forced swim test. Pharmacol Biochem Behav 70(1):65–76PubMedCrossRefGoogle Scholar
  106. 106.
    DSM-IV (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychological Association, Washington, DCGoogle Scholar
  107. 107.
    Strekalova T, Steinbusch H (2009) Factors of reproducibility of anhedonia induction in a chronic stress depression model in mice. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New YorkGoogle Scholar
  108. 108.
    Niemi MB et al (2008) Neuro-immune associative learning. In: Lajtha A, Galoyan A, Besedovski HO (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New YorkGoogle Scholar
  109. 109.
    Brennan PA, Keverne EB (1997) Neural mechanisms of mammalian olfactory learning. Prog Neurobiol 51(4):457–481PubMedCrossRefGoogle Scholar
  110. 110.
    Bryan KJ et al (2009) Chapter 1: transgenic mouse models of Alzheimer’s disease: ¬behavioral testing and considerations. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  111. 111.
    Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311PubMedCrossRefGoogle Scholar
  112. 112.
    Stefanko DP et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci U S A 106(23):9447–9452PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Chiu GS, Chatterjee D, Darmody PT et al (2012) Hypoxia/reoxygenation impairs memory formation via adenosine-dependent activation of caspase 1. J Neurosci 32:13945–13955. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Win-Shwe TT, Fujimaki H (2012) Acute administration of toluene affects memory retention in novel object recognition test and memory function-related gene expression in mice. J Appl Toxicol 32(4):300–304PubMedCrossRefGoogle Scholar
  115. 115.
    Gainey SJ, Kwakwa KA, Bray JK et al (2016) Short-term high-fat diet (HFD) induced anxiety-like behaviors and cognitive impairment are improved with treatment by glyburide. Front Behav Neurosci 10:156. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Towers AE, Oelschlager ML, Patel J et al (2017) Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition. Metabolism 71:70–82. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Wehner JM, Radcliffe RA (2004) Cued and contextual fear conditioning in mice. Curr Protoc Neurosci Chapter 8:Unit 8.5CPubMedGoogle Scholar
  118. 118.
    Deacon RMJ, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1(1):7–12PubMedCrossRefGoogle Scholar
  119. 119.
    Lalonde R (2002) The neurological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104PubMedCrossRefGoogle Scholar
  120. 120.
    Bekker A et al (2006) Isoflurane preserves spatial working memory in adult mice after moderate hypoxia. Anesth Analg 102:1134–1138PubMedCrossRefGoogle Scholar
  121. 121.
    Harrison FE et al (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem 13(6):809–819PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    O’Leary TP, Brown RE (2009) Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 201:120–127PubMedCrossRefGoogle Scholar
  123. 123.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43:840–846PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380PubMedCrossRefGoogle Scholar
  126. 126.
    Horner AE, Heath CJ, Hvoslef-Eide M et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8:1961–1984. CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Bushnell PJ, Strupp BJ (2009) Assessing attention in rodents. CRC Press/Taylor & Francis, Boca Raton, FLGoogle Scholar
  128. 128.
    Young JW, Light GA, Marston HM et al (2009) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS One 4:e4227. CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Grissom NM, Herdt CT, Desilets J et al (2015) Dissociable deficits of executive function caused by gestational adversity are linked to specific transcriptional changes in the prefrontal cortex. Neuropsychopharmacology 40:1353–1363. CrossRefPubMedGoogle Scholar
  130. 130.
    Dishman RK et al (2006) Neurobiology of exercise. Obesity 14:345–346PubMedCrossRefGoogle Scholar
  131. 131.
    Leasure JL, Jones M (2008) Forced a voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465PubMedCrossRefGoogle Scholar
  132. 132.
    Garland TH Jr et al (2011) The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 214(pt 2):206–229PubMedCrossRefGoogle Scholar
  133. 133.
    Noakes TD (2011) Time to move behind a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab 36:23–35PubMedCrossRefGoogle Scholar
  134. 134.
    Takeshita H, Yamamoto K, Nozato S et al (2017) Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep 7:42323. CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Messina S, Bitto A, Aguennouz M et al (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198:234–241. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Albert E. Towers
    • 1
  • Jason M. York
    • 2
  • Tracy Baynard
    • 3
  • Stephen J. Gainey
    • 4
  • Gregory G. Freund
    • 1
    • 4
    • 5
    Email author
  1. 1.Division of Nutritional SciencesUniversity of IllinoisUrbanaUSA
  2. 2.School of Molecular and Cellular BiologyUniversity of IllinoisChicagoUSA
  3. 3.Department of Kinesiology and NutritionUniversity of IllinoisChicagoUSA
  4. 4.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  5. 5.Department of Pathology, Program in Integrative Immunology and Behavior, College of MedicineUniversity of IllinoisUrbanaUSA

Personalised recommendations