Application of Chemogenetics and Optogenetics to Dissect Brain-Immune Interactions

  • Ben Korin
  • Asya Rolls
Part of the Methods in Molecular Biology book series (MIMB, volume 1781)


For many years, the complexity and multifactorial nature of brain-immune interactions limited our ability to dissect their underlying mechanisms. An especially challenging question was how the brain controls immunity, since the repertoire of techniques to control the brain’s activity was extremely limited. New tools, such as optogenetics and chemogenetics (e.g., DREADDs), developed over the last decade, opened new frontiers in neuroscience with major implications for neuroimmunology. These tools enable mapping the causal effects of activating/attenuating defined neurons in the brain, on the immune system. Here, we present a detailed experimental protocol for the analysis of brain-immune interactions, based on chemogenetic or optogenetic manipulation of defined neuronal populations in the brain, and the subsequent analysis of immune cells. Such detailed and systematic dissection of brain-immune interactions has the potential to revolutionize our understanding of how mental and neurological states affect health and disease.

Key words

Immune system Brain Neuroimmunology Neuroscience Central nervous system Immunity DREADDs Chemogenetics Optogenetics 



We would like to thank S. Schwarzbaum for editing the paper, and T.L. Ben-Shaanan, M. Schiller, and H. Azulay-Debby for their help and advice. Our research is supported by the Israeli Ministry of Science, Technology & Space (MOST; 3-12070), Prince Center for Neurodegenerative Diseases, Israeli Society for Science (1862/15), the Colleck Research Fund and the ADELIS Foundation. A.R. is a Howard Hughes Medical Institute-Wellcome Trust researcher.


  1. 1.
    Ben-Shaanan TL, Azulay-Debby H, Dubovik T et al (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22:940–944. CrossRefPubMedGoogle Scholar
  2. 2.
    Abe C, Inoue T, Inglis MA et al (2017) C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 20:700–707. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20:156–166. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29CrossRefPubMedGoogle Scholar
  5. 5.
    Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417. CrossRefPubMedGoogle Scholar
  7. 7.
    Cardin JA, Carlén M, Meletis K et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5:247–254. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Furman M, Zhan Q, McCafferty C et al (2015) Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: effects on cortical physiology. Epilepsia 56:e198–e202. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zeng H, Madisen L (2012) Mouse transgenic approaches in optogenetics. Prog Brain Res 196:193–213. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sidor MM, Davidson TJ, Tye KM et al (2015) In vivo optogenetic stimulation of the rodent central nervous system. J Vis Exp 95:51483. CrossRefGoogle Scholar
  12. 12.
    Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573. CrossRefPubMedGoogle Scholar
  13. 13.
    Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392. CrossRefGoogle Scholar
  15. 15.
    Prigge M, Schneider F, Tsunoda SP et al (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407. CrossRefGoogle Scholar
  17. 17.
    Ferguson SM, Neumaier JF (2012) Grateful DREADDs: engineered receptors reveal how neural circuits regulate behavior. Neuropsychopharmacology 37:296–297. CrossRefGoogle Scholar
  18. 18.
    Gomez JL, Bonaventura J, Lesniak W et al (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–507. CrossRefGoogle Scholar
  19. 19.
    Raper J, Morrison RD, Daniels JS et al (2017) Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem Nerosci 8:1570–1576. CrossRefGoogle Scholar
  20. 20.
    Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4. CrossRefPubMedGoogle Scholar
  21. 21.
    Matsumoto M, Matsuzaki F, Oshikawa K et al (2017) A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods 14:251–258. CrossRefPubMedGoogle Scholar
  22. 22.
    Nyman TA, Lorey MB, Cypryk W, Matikainen S (2017) Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Rev Proteomics 14:395–407. CrossRefPubMedGoogle Scholar
  23. 23.
    Rieckmann JC, Geiger R, Hornburg D et al (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 18:583–593. CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung RK, Utz PJ (2011) Screening: CyTOF—the next generation of cell detection. Nat Rev Rheumatol 7:502–503CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brodie TM, Tosevski V (2017) High-dimensional single-cell analysis with mass cytometry. Curr Protoc Immunol 118:5.11.1–5.11.25. CrossRefGoogle Scholar
  27. 27.
    Gunaydin LA, Grosenick L, Finkelstein JC et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649CrossRefPubMedGoogle Scholar
  29. 29.
    LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ben Korin
    • 1
    • 2
  • Asya Rolls
    • 1
    • 2
  1. 1.Department of Immunology, Rappaport Faculty of MedicineTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Neuroscience, Rappaport Faculty of MedicineTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations