Advertisement

Nonmammalian Models of Huntington’s Disease

  • Anjalika Chongtham
  • Brett Barbaro
  • Tomas Filip
  • Adeela Syed
  • Weijian Huang
  • Marianne R. Smith
  • J. Lawrence Marsh
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

Flies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control. Loss of motor control is prominent in patients, but it remains unresolved whether pathogenic symptoms in patients result from overt degeneration and loss of neurons or from malfunctioning of surviving neurons as the pathogenic insult builds up. This is why a functional assay such as motor control can be uniquely powerful in revealing early as well as late neurological deficits and does not rely on assumptions such as that the level of inclusions or the degree of neuronal loss can be equated with the level of pathology. Drosophila is well suited for such assays because it contains a functioning nervous system with many parallels to the human condition. In addition, the ability to readily express mHTT transgenes in different tissues and subsets of neurons allows one the possibility of isolating a particular effect to a subset of neurons where one can correlate subcellular events in response to mHTT challenge with pathology at both the cellular and organismal levels. Here we describe methods to monitor the degree of motor function disruption in Drosophila models of HD and we include a brief summary of other nonmammalian models of HD and discussion of their unique strengths.

Keywords

Huntingtin PolyQ Motor function Drosophila Nonmammalian Huntington’s disease models 

Notes

Acknowledgements

Support was provided by HD CARE, R01-NS-045283.

References

  1. 1.
    Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Steffan JS (2010) Does Huntingtin play a role in selective macroautophagy? Cell Cycle 9:3401–3413PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ochaba J, Lukacsovich T, Csiko G et al (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rui YN, Xu Z, Patel B et al (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  6. 6.
    Marsh JL, Thompson LM (2004) Can flies help humans treat neurodegenerative diseases? Bioessays 26:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mangiarini L, Sathasivam K, Selle M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tabrizi SJ, Workman J, Har PE et al (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–86PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Solans A, Zambrano A, Rodrigue M, Barrientos A (2006) Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 15:3063–3081PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kim J, Moody JP, Edgerly CK et al (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19:3919–3935PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Besson MT, Dupont P, Fridell YW, Lievens JC (2010) Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington’s disease. Hum Mol Genet 19:3372–3382PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gunawardena S, Her LS, Brusch RG et al (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Khalil B, El Fissi N, Aouane A et al (2015) PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell Death Dis 6:e1617PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Fernandez-Funez P, Nino-Rosales ML, de Gouyon B et al (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101–106PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bates EA, Victor M, Jones AK et al (2006) Differential contributions of Caenorhabditis elegans 35 histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26:2830–2838PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Parker JA, Arango M, Abderrahmane S et al (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Pallos J, Bodai L, Lukacsovich T et al (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 17:3767–3775PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ledford H (2010) Ageing: much ado about ageing. Nature 464:480–481PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li JL, Hayden MR, Almqvist EW et al (2003) A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 73:682–687PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Keum JW, Shin A, Gillis T et al (2016) The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet 98:287–298PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Skillings EA, Wood NI, Morton AJ (2014) Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington’s disease. Brain Behav 4:675–686PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Spires TL, Grote HE, Varshney NK, Cordery PM et al (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Branco J, Al-Ramahi I, Ukani L et al (2008) Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet 17:376–390PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kaltenbach LS, Romero E, Becklin RR et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3:e82PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Smith MR, Syed A, Lukacsovich T et al (2014) A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet 23:2995–3007PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hockly E, Richon VM, Woodman B et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100:2041–2046PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nishimura Y, Yalgin C, Akimoto S et al (2010) Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington’s disease-like model. J Neurogenet 24:194–206PubMedCrossRefGoogle Scholar
  33. 33.
    Peterson RT, Nass R, Boyd WA et al (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology 29:546–555PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721PubMedCrossRefGoogle Scholar
  35. 35.
    Beam M, Silva MC, Morimoto RI (2012) Dynamic imaging by fluorescence correlation spectroscopy identifies diverse populations of polyglutamine oligomers formed in vivo. J Biol Chem 287:26136–26145PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Brignull HR, Morley JF, Morimoto RI (2007) The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging. Adv Exp Med Biol 594:167–189PubMedCrossRefGoogle Scholar
  37. 37.
    Gidalevitz T, Wang N, Deravaj T et al (2013) Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol 11:100PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Barbaro BA, Lukacsovich T, Agrawal N et al (2015) Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet 24:913–925PubMedCrossRefGoogle Scholar
  39. 39.
    Khurana V, Lindquist S (2010) Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat Rev Neurosci 11:436–449PubMedCrossRefGoogle Scholar
  40. 40.
    Mason RP, Giorgini F (2011) Modeling Huntington disease in yeast: perspectives and future directions. Prion 5:269–276PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pereira C, Bessa C, Soare J et al (2012) Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012:941232PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Oliveira AV, Vilaca R, Santos CN et al (2017) Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 18:3–34PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Duennwald ML, Lindquist S (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22:3308–3319PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Meriin AB, Zhang X, Miliaras NB et al (2003) Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23:7554–7565PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sokolov S, Pozniakovsky A, Bocharova N et al (2006) Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers. Biochim Biophys Acta 1757:660–666PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chopra V, Fox JH, Lieberman G et al (2007) A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A 104:16685–16689PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ocampo A, Zambrano A, Barrientos A (2010) Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis. FASEB J 24:1431–1441PubMedCrossRefGoogle Scholar
  49. 49.
    Zwilling D, Huang SY, Sathyasaikumar KV et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Giorgini F, Guidetti P, Nguyen Q et al (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhang X, Smith DL, Meriin AB et al (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 102:892–897PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ehrnhoefer DE, Duennwald M, Markovic P et al (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–398PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wolozin B, Gabel C, Ferree A et al (2011) Watching worms whither: modeling neurodegeneration in C. elegans. Prog Mol Biol Transl Sci 100:499–514PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chen X, Barclay JW, Burgoyne RD, Morgan A (2015) Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 9:65PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  57. 57.
    Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 4:38PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiol Dis 40:4–11PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Faber PW, Alter JR, MacDonald ME, Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 96:179–184PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Parker JA, Connolly JB, Wellington C et al (2001) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci U S A 98:13318–13323PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gidalevitz T, Ben-Zvi A, Ho KH et al (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Vayndorf EM, Scerbak C, Hunter S et al (2016) Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis. NPJ Aging Mech Dis 2.  https://doi.org/10.1038/npjamd.2016.1
  64. 64.
    Vazquez-Manrique RP, Farina F, Cambon K et al (2016) AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington’s disease. Hum Mol Genet 25:1043–1058PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Parker JA, Vazquez-Manrique RP, Tourette C et al (2012) Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 32:12630–12640PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lejeune FX, Mesrob L, Parmentier F et al (2012) Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13:91PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Neri C (2011) Value of invertebrate genetics and biology to develop neuroprotective and preventive medicine in Huntington’s disease. In: Lo DC, Hughes RE (eds) Neurobiology of Huntington’s disease: applications to drug discovery, Boca Raton, FL, CRC Press/Taylor & FrancisGoogle Scholar
  68. 68.
    Gohil VM, Offner N, Walker JA et al (2011) Meclizine is neuroprotective in models of Huntington’s disease. Hum Mol Genet 20:294–300PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Luthi-Carter R, Taylor DM, Pallos J et al (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 107:7927–7932PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lewis EA, Smith GA (2016) Using Drosophila models of Huntington’s disease as a translatable tool. J Neurosci Methods 265:89–98PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Xu Z, Tito AJ, Rui YN, Zhang S (2015) Studying polyglutamine diseases in Drosophila. Exp Neurol 274:25–41PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lu B, Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4:315–342PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chan HY, Bonini NM (2000) Drosophila models of human neurodegenerative disease. Cell Death Differ 7:1075–1080PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Steffan JS, Agrawal N, Pallos J et al (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304:100–104PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Marsh JL, Pallos J, Thompson LM (2003) Fly models of Huntington’s disease. Hum Mol Genet 12 Spec No 2:R187–R193PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedPubMedCentralGoogle Scholar
  78. 78.
    Song W, Onishi M, Jan LY, Jan YN (2007) Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proc Natl Acad Sci U S A 104:5199–5204PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ferrante RJ, Kubilus JK, Lee J et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sadri-Vakili G, Cha JH (2006) Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death). Curr Alzheimer Res 3:403–408PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mielcarek M, Landles C, Weiss A et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11:e1001717PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Beconi M, Aziz O, Matthews K et al (2012) Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PLoS One 7:e44498PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Moumne L, Campbell K, Howland D et al (2012) Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington’s disease. PLoS One 7:e31080PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mielcarek M, Benn CL, Franklin SA et al (2011) SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e27746PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bobrowska A, Paganetti P, Matthias P, Bates GP (2011) Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e20696PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Benn CL, Butler R, Mariner L et al (2009) Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One 4:e5747PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Miller JP, Holcomb J, Al-Ramahi I et al (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67:199–212PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jimenez-Sanchez M, Lam W, Hannus M et al (2015) siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat Chem Biol 11:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bandmann O, Burton EA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40:58–65PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Becker TS, Rinkwitz S (2012) Zebrafish as a genomics model for human neurological and polygenic disorders. Dev Neurobiol 72:415–428PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chapouton P, Jagasia R, Bally-Cuif L (2007) Adult neurogenesis in non-mammalian vertebrates. Bioessays 29:745–757PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kabashi E, Brustein E, Champagne N, Drapeau P (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 1812:335–345PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Xi Y, Noble S, Ekker M (2011) Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep 11:274–282PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kizil C, Kaslin J, Kroehne V, Brand M (2012) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72:429–461PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Babin PJ, Goizet C, Raldua D (2014) Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Vacaru AM, Unlu G, Spitzner M et al (2014) In vivo cell biology in zebrafish – providing insights into vertebrate development and disease. J Cell Sci 127:485–495PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Oosterhof N, Boddeke E, van Ham TJ (2015) Immune cell dynamics in the CNS: learning from the zebrafish. Glia 63:719–735PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Das S, Rajanikant GK (2014) Huntington disease: can a zebrafish trail leave more than a ripple? Neurosci Biobehav Rev 45:258–261PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Miller VM, Nelson RF, Gouvion CM et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Schiffer NW, Broadley SA, Hirschberger T et al (2007) Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem 282:9195–9203PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lumsden AL, Henshall TL, Dayan S et al (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16:1905–1920PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lo Sardo V, Zuccato C, Gaudenzi G et al (2012) An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 15:713–721PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci U S A 101:3224–3229PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Steinert JR, Campesan S, Richards P et al (2012) Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease. Hum Mol Genet 21:2912–2922PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Arribat Y, Bonneaud N, Talmat-Amar Y et al (2013) A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 8:e68775PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gomez-Marin A, Louis M (2012) Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Curr Opin Neurobiol 22:208–215PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2:441PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Song W, Smith MR, Syed A et al (2013) Morphometric analysis of Huntington’s disease neurodegeneration in Drosophila. Methods Mol Biol 1017:41–57PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bodily KD, Morrison CM, Renden RB, Broadie K (2001) A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J Neurosci 21:3113–3125PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pan L, Woodruff E, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor. A signaling. Mol Cell Neurosci 37:747–760PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shiraishi R, Tamura T, Sone M, Okazawa H (2014) Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 9:e116567PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lanson NA, Maltare A, King H et al (2011) A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20:2510–2523PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anjalika Chongtham
    • 1
  • Brett Barbaro
    • 1
    • 2
  • Tomas Filip
    • 1
    • 3
  • Adeela Syed
    • 1
  • Weijian Huang
    • 1
  • Marianne R. Smith
    • 1
    • 4
  • J. Lawrence Marsh
    • 1
  1. 1.Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUSA
  2. 2.The Scripps Research InstituteLa JollaUSA
  3. 3.Biology Centre Czech Acad. Sci.Ceske BudejoviceCzech Republic
  4. 4.University Advancement, UC IrvineIrvineUSA

Personalised recommendations