Peptide Self-Assembly pp 3-21 | Cite as
Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies
Abstract
Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.
Key words
Peptides Conformation Secondary structure Characterization methods X-ray diffraction Fluorescence spectroscopy Circular dichroism Linear dichroism FTIR spectroscopy NMR Light scattering Small-angle X-ray scattering (SAXS) Small-angle neutron scattering (SANS) Atomic force microscopy (AFM) Electron microscopyNotes
Acknowledgements
This work was supported by EPSRC Platform Grant reference EPSRC EP/L020599/1. We thank our collaborators for their vital contributions to several aspects of our ongoing research, especially in the fields of AFM imaging (Prof Raffaele Mezzenga and Dr. Jozef Adamcik, ETH Zürich) and cryo-TEM imaging (Prof Janne Ruokolainen and his team at Aalto University, Finland).
References
- 1.Creighton TE (1993) Proteins. Structures and molecular properties. W.H. Freeman, New YorkGoogle Scholar
- 2.Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112PubMedCrossRefGoogle Scholar
- 3.Woolfson DN, Bartlett GJ, Bruning M, Thomson AR (2012) New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr Opin Struct Biol 11:432–441CrossRefGoogle Scholar
- 4.Apostolovic B, Danial M, Klok HA (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39:3541–3575PubMedCrossRefGoogle Scholar
- 5.Santoso SS, Vauthey S, Zhang S (2002) Structure, function and applications of amphiphilic peptides. Curr Opin Colloid Interface Sci 7:262–266CrossRefGoogle Scholar
- 6.Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Zhao X, Zhang S (2004) Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol 22:470–476PubMedCrossRefGoogle Scholar
- 8.Löwik DWPM, van Hest JCM (2004) Peptide based amphiphiles. Chem Soc Rev 33:234–245PubMedCrossRefGoogle Scholar
- 9.Cavalli S, Kros A (2008) Scope and applications of amphiphilic alkyl- and lipopeptides. Adv Mater 20:627–631CrossRefGoogle Scholar
- 10.Versluis F, Marsden HR, Kros A (2010) Power struggles in peptide-amphiphile nanostructures. Chem Soc Rev 39:3434–3444PubMedCrossRefGoogle Scholar
- 11.Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94:1–18CrossRefGoogle Scholar
- 12.Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7:4122–4138CrossRefGoogle Scholar
- 13.Dehsorkhi A, Castelletto V, Hamley IW (2014) Self-assembling amphiphilic peptides. J Pept Sci 20:453–467PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265PubMedCrossRefGoogle Scholar
- 15.Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282PubMedCrossRefGoogle Scholar
- 16.Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature (London) 435:773–778CrossRefGoogle Scholar
- 17.Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16:673–677PubMedCrossRefGoogle Scholar
- 18.Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-β conformation. Proc Natl Acad Sci U S A 83:503–507PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Sunde M, Blake CCF (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159PubMedCrossRefGoogle Scholar
- 20.Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30PubMedCrossRefGoogle Scholar
- 21.Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961PubMedCrossRefGoogle Scholar
- 22.Hamley IW, Castelletto V, Moulton CM, Rodriguez-Perez J, Squires AM, Eralp T, Held G, Hicks M, Rodger A (2010) Alignment of a model amyloid peptide fragment in bulk and at a solid surface. J Phys Chem B 114:8244–8254PubMedCrossRefGoogle Scholar
- 23.Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112:5147–5192PubMedCrossRefGoogle Scholar
- 24.Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterization of fibrous proteins and peptides using fibre diffraction. Chem Soc Rev 39:3445–3453PubMedCrossRefGoogle Scholar
- 25.Makin OS, Sikorski P, Serpell LC (2007) CLEARER: a new tool for the analysis of X-ray fibre diffraction patterns and diffraction simulation from atomic structural models. J Appl Crystallogr 40:966–972CrossRefGoogle Scholar
- 26.Squires AM, Devlin GL, Gras SL, Tickler AK, MacPhee CE, Dobson CM (2006) X-ray scattering study of the effect of hydration on the cross-β structure of amyloid fibrils. J Am Chem Soc 128:11738–11739PubMedCrossRefGoogle Scholar
- 27.Papapostolou D, Smith AM, Atkins EDT, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104:10853–10858PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Makin OS, Serpell LC (2004) The structure of amyloid. Fibre Diffraction Review 12:29–35Google Scholar
- 30.Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739PubMedCrossRefGoogle Scholar
- 31.Hill RJA, Sedman VL, Allen S, Williams PM, Paoli M, Adler-Abramovich L, Eaves L, Tendler SJB (2007) Alignment of aromatic peptide tubes in strong magnetic fields. Adv Mater 19:4474–4479CrossRefGoogle Scholar
- 32.Hamley IW (2007) Peptide fibrillisation. Angew Chem 46:8128–8147CrossRefGoogle Scholar
- 33.Levine H (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Wood SJ, Maleef B, Hart T, Wetzel R (1996) Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ. J Mol Biol 256:870–877PubMedCrossRefGoogle Scholar
- 35.Hamley IW (2007) Introduction to soft matter, Revised edn. Wiley, ChichesterGoogle Scholar
- 36.Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044CrossRefGoogle Scholar
- 37.Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer-solutions and in other organized media. Chem Rev 93:587–614CrossRefGoogle Scholar
- 38.Guler MO, Claussen RC, Stupp SI (2005) Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers. J Mater Chem 15:4507–4512CrossRefGoogle Scholar
- 39.Sabate R, Estelrich J (2005) Evidence of the existence of micelles in the fibrillogenesis of beta-amyloid peptide. J Phys Chem B 109:11027–11032PubMedCrossRefGoogle Scholar
- 40.Castelletto V, Cheng G, Greenland BW, Hamley IW (2011) Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent. Langmuir 27:2980–2988PubMedCrossRefGoogle Scholar
- 41.Castelletto V, Cheng G, Stain C, Connon CJ, Hamley IW (2012) Self-assembly of a peptide amphiphile containing L-carnosine and its mixtures with a multilamellar vesicle forming lipid. Langmuir 28:11599–11608PubMedCrossRefGoogle Scholar
- 42.Jones RR, Castelletto V, Connon CJ, Hamley IW (2013) Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol Pharm 10:1063–1069PubMedCrossRefGoogle Scholar
- 43.Castelletto V, Gouveia RJ, Connon CJ, Hamley IW (2013) New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discuss 166:381–397PubMedCrossRefGoogle Scholar
- 44.Hamley IW, Dehsorkhi A, Castelletto V (2013) Coassembly in binary mixtures of peptide amphiphiles containing oppositely charged residues. Langmuir 29:5050–5059PubMedCrossRefGoogle Scholar
- 45.Castelletto V, Gouveia RJ, Connon CJ, Hamley IW, Seitsonen J, Nykänen A, Ruokolainen J (2014) Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomater Sci 2:362–369CrossRefGoogle Scholar
- 46.Fowler M, Siddique B, Duhamel J (2013) Effect of sequence on the ionization behavior of a series of amphiphilic polypeptides. Langmuir 29:4451–4459PubMedCrossRefGoogle Scholar
- 47.Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Reza M, Ruokolainen J (2014) Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chem Commun 50:15948–15951CrossRefGoogle Scholar
- 48.Wilhelm M, Zhao C-L, Wang Y, Xu R, Winnik MA, Mura J-L, Riess G, Croucher MD (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040CrossRefGoogle Scholar
- 49.Johnsson M, Hansson P, Edwards K (2001) Spherical micelles and other self-assembled structures in dilute aqeuous mixtures of poly(ethylene glycol) lipids. J Phys Chem B 105:8420–8430CrossRefGoogle Scholar
- 50.Decandio CC, Silva ER, Hamley IW, Castelletto V, Liberato MS, Oliveira VX, Oliveira CLP, Alves WA (2015) Self-assembly of a designed alternating arginine/phenylalanine oligopeptide. Langmuir 31:4513–4523PubMedCrossRefGoogle Scholar
- 51.LeVine H (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. In: Wetzel R (ed) Methods in enzymology, vol 309. Academic, San Diego, pp 274–284Google Scholar
- 52.Santra MK, Banerjee A, Krishnakumar SS, Rahaman O, Panda D (2004) Multiple-probe analysis of folding and unfolding pathways of human serum albumin - evidence for a framework mechanism of folding. Eur J Biochem 271:1789–1797PubMedCrossRefGoogle Scholar
- 53.Jha S, Snell JM, Sheftic SR, Patil SM, Daniels SB, Kolling FW, Alexandrescu AT (2014) pH dependence of amylin fibrillization. Biochemistry 53:300–310PubMedCrossRefGoogle Scholar
- 54.van den Heuvel M, Baptist H, Venema P, van der Linden E, Löwik D, van Hest JCM (2011) Mechanical and thermal stabilities of peptide amphiphile fibres. Soft Matter 7:9737–9743CrossRefGoogle Scholar
- 55.Nagai A, Nagai Y, Qu HJ, Zhang SG (2007) Dynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes. J Nanosci Nanotechnol 7:2246–2252PubMedCrossRefGoogle Scholar
- 56.Khoe U, Yang YL, Zhang SG (2008) Synergistic effect and hierarchical nanostructure formation in mixing two designer lipid-like peptide surfactants ac-A6D-OH and ac-A6K-NH2. Macromol Biosci 8:1060–1067PubMedCrossRefGoogle Scholar
- 57.Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodríguez-Llansola F (2010) Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B 114:940–951PubMedCrossRefGoogle Scholar
- 58.Miravet JF, Escuder B, Segarra-Maset MD, Tena-Solsona M, Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles. Soft Matter 9:3558–3564CrossRefGoogle Scholar
- 59.Girych M, Gorbenko G, Trusova V, Adachi E, Mizuguchi C, Nagao K, Kawashima H, Akaji K, Lund-Katz S, Phillips MC, Saito H (2014) Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study. J Struct Biol 185:116–124PubMedCrossRefGoogle Scholar
- 60.Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139PubMedCrossRefGoogle Scholar
- 61.Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71PubMedCrossRefGoogle Scholar
- 62.Shi ZS, Woody RW, Kallenbach NR (2002) Is polyproline II a major backbone conformation in unfolded proteins? In: Rose GD (ed) Unfolded proteins, Advances in protein chemistry, vol 62. Academic, San Diego, pp 163–240CrossRefGoogle Scholar
- 63.Paramonov SE, Jun H-W, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298PubMedCrossRefGoogle Scholar
- 64.Woody RW (2009) Circular dichroism spectrum of peptides in the poly(pro)II conformation. J Am Chem Soc 131:8234–8245PubMedCrossRefGoogle Scholar
- 65.Castelletto V, Hamley IW, Cenker C, Olsson U, Adamcik J, Mezzenga R, Miravet JF, Escuder B, Rodriguez-Llansola F (2011) Influence of end-capping on the self-assembly of model amyloid peptide fragments. J Phys Chem B 115:2107–2116PubMedCrossRefGoogle Scholar
- 66.Bulheller BM, Rodger A, Hirst JD (2007) Circular and linear dichroism of proteins. Phys Chem Chem Phys 9:2020–2035PubMedCrossRefGoogle Scholar
- 67.Reed J, Reed A (1997) A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Anal Biochem 254:36–40PubMedCrossRefGoogle Scholar
- 68.Rodger A, Nordén B (1997) Circular dichroism and linear dichroism. Oxford University Press, OxfordGoogle Scholar
- 69.Nordén B, Rodger A, Dafforn TR (2010) Linear dichroism and circular dichroism: a textbook on polarized-light spectroscopy. Royal Society of Chemistry, CambridgeGoogle Scholar
- 70.Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32:389–394PubMedCrossRefGoogle Scholar
- 71.Stuart B (1997) Biological applications of infrared spectroscopy. Wiley, ChichesterGoogle Scholar
- 72.Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120PubMedCrossRefGoogle Scholar
- 73.Hiramatsu H, Kitagawa T (2005) FT-IR approaches on amyloid fibril structure. Biochim Biophys Acta 1753:100–107PubMedCrossRefGoogle Scholar
- 74.Haris P, Chapman D (1995) The conformational analysis of peptide using Fourier transform IR spectroscopy. Biopolymers 37:251–263PubMedCrossRefGoogle Scholar
- 75.Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430PubMedCrossRefGoogle Scholar
- 76.Kubelka J, Keiderling TA (2001) The anomalous infrared amide I intensity distribution in 13C isotopically labeled peptide β-sheets comes from extended, multiple-stranded structures. An ab initio study. J Am Chem Soc 123:6142–6150PubMedCrossRefGoogle Scholar
- 77.Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364PubMedCrossRefGoogle Scholar
- 78.Bellamy LJ (1975) The infra-red spectra of complex molecules. Chapman and Hall, LondonCrossRefGoogle Scholar
- 79.Castelletto V, Moulton CM, Cheng G, Hamley IW, Hicks MR, Rodger A, López-Pérez DE, Revilla-López G, Alemán C (2011) Self-assembly of fmoc-tetrapeptides based on the RGDS cell adhesion motif. Soft Matter 7:11405–11415CrossRefGoogle Scholar
- 80.Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176PubMedCrossRefGoogle Scholar
- 81.Gaussier H, Morency H, Lavoie MC, Subirade M (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 68:4803–4808PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Eker F, Griebenow K, Schweitzer-Stenner R (2004) Aβ1-28 fragment of the amyloid peptide predominantly adopts a polypropyline II conformation in acidic solution. Biochemistry 43:6893–6898PubMedCrossRefGoogle Scholar
- 83.Liang Y, Pingali SV, Jogalekar AS, Snyder JP, Thiyagarajan P, Lynn DG (2008) Cross-strand pairing and amyloid assembly. Biochemistry 47:10018–10026PubMedCrossRefGoogle Scholar
- 84.Mehta AK, Lu K, Childers WS, Liang S, Dong J, Snyder JP, Pingali SV, Thiyagarajan P, Lynn DG (2008) Facial symmetry in protein self-assembly. J Am Chem Soc 130:9829–9835PubMedCrossRefGoogle Scholar
- 85.Rodríguez-Pérez J, Hamley IW, Gras SL, Squires AM (2012) Local orientational disorder in peptide fibrils probed by a combination of residue-specific 13C-18O labelling, polarised infrared spectroscopy and molecular combing. Chem Commun 48:11835–11837CrossRefGoogle Scholar
- 86.Middleton DA, Madine J, Castelletto V, Hamley IW (2013) New insights into the molecular architecture of a peptide nanotube using FTIR and solid-state NMR spectroscopy combined with sample alignment. Angew Chem Int Ed Engl 52:10537–10540PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Rodriguez-Perez J, Hamley IW, Squires AM (2011) Infrared linear dichroism spectroscopy on amyloid fibrils aligned by molecular combing. Biomacromolecules 12:1810–1821PubMedCrossRefGoogle Scholar
- 88.Nafie LA (1997) Infrared and raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem 48:357–386PubMedCrossRefGoogle Scholar
- 89.Keiderling TA (2002) Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Curr Opin Chem Biol 6:682–688PubMedCrossRefGoogle Scholar
- 90.Costa PR, Kocisko DA, Sun BQ, Lansbury PT, Griffin RG (1997) Determination of peptide amide configuration in a model amyloid fibril by solid-state NMR. J Am Chem Soc 119:10487–10493CrossRefGoogle Scholar
- 91.Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (2000) Two-dimensional structure of β-amyloid(10-35) fibrils. Biochemistry 39:3491–3499PubMedCrossRefGoogle Scholar
- 92.Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed Engl 44:2441–2444PubMedCrossRefGoogle Scholar
- 93.Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876PubMedPubMedCentralCrossRefGoogle Scholar
- 94.Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer’s β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759PubMedCrossRefGoogle Scholar
- 95.Ma BY, Nussinov R (2002) Stabilities and conformations of Alzheimer’s beta-amyloid peptide oligomers (Aβ16-22, Aβ16-35, and Aβ10-35): sequence effects. Proc Natl Acad Sci U S A 99:14126–14131PubMedPubMedCentralCrossRefGoogle Scholar
- 96.Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103PubMedCrossRefGoogle Scholar
- 97.Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55PubMedPubMedCentralCrossRefGoogle Scholar
- 98.Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Castelletto V, Hamley IW, Segarra-Maset MD, Gumbau CB, Miravet JF, Escuder B, Seitsonen J, Ruokolainen J (2014) Tuning chelation by the surfactant-like peptide A6H using predetermined pH values. Biomacromolecules 15:591–598PubMedCrossRefGoogle Scholar
- 100.Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A 93:1125–1129PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Riseman J, Kirkwood JG (1950) J Chem Phys 18:512–516CrossRefGoogle Scholar
- 102.Pallitto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM (1999) Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity. Biochemistry 38:3570–3578PubMedCrossRefGoogle Scholar
- 103.Shen C-L, Fitzgerald MC, Murphy RM (1994) Effect of acid predissolution on fibril size and fibril flexibility of synthetic β-amyloid peptide. Biophys J 67:1238–1246PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Krysmann MJ, Castelletto V, Kelarakis A, Hamley IW, Hule RA, Pochan DJ (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47:4597–4605PubMedCrossRefGoogle Scholar
- 105.Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372PubMedCrossRefGoogle Scholar
- 106.Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid β-protein fibrillization. Proc Natl Acad Sci U S A 95:12277–12282PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, Moss DA, Gast K, Naumann D (2003) Formation of critical oligomers is a key event during conformational transition of recombinant Syrian hamster prion protein. J Biol Chem 278:40481–40492PubMedCrossRefGoogle Scholar
- 108.Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers—a novel pathway of amyloid formation. J Mol Biol 325:135–148PubMedCrossRefGoogle Scholar
- 109.Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interf Sci 70:171–210CrossRefGoogle Scholar
- 110.Hamley IW, Krysmann MJ, Castelletto V, Kelarakis A, Noirez L, Hule RA, Pochan D (2008) Nematic and columnar ordering of a PEG-peptide conjugate in aqueous solution. Chem Eur J 14:11369–11374PubMedCrossRefGoogle Scholar
- 111.Hamley IW, Krysmann MJ, Castelletto V, Noirez L (2008) Multiple lyotropic polymorphism of a PEG-peptide diblock copolymer in aqueous solution. Adv Mater 20:4394–4397CrossRefGoogle Scholar
- 112.Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality X-ray data. Phys Rev E 62:4000–4009CrossRefGoogle Scholar
- 113.Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49:1850–1852CrossRefGoogle Scholar
- 114.
- 115.Caillé A (1972) X-ray scattering by smectic-a crystals. CR Hebd Seances Acad Sci (Paris) B 274:891–893Google Scholar
- 116.Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self assembly. J Am Chem Soc 125:6391–6393PubMedCrossRefGoogle Scholar
- 117.Hamley IW, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J (2013) Reversible helical ribbon unwinding transition of a self-assembling peptide amphiphile. Soft Matter 9:9290–9293CrossRefGoogle Scholar
- 118.Dehsorkhi A, Hamley IW, Seitsonen J, Ruokolainen J (2013) Tuning self-assembled nanostructures through enzymatic degradation of a peptide amphiphile. Langmuir 29:6665–6672PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Hamley IW, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Chataigné G, Jacques P (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9:9572–9578PubMedCrossRefGoogle Scholar
- 120.Dehsorkhi A, Gouveia RJ, Smith AM, Hamley IW, Castelletto V, Connon CJ, Reza M, Ruokolainen J (2015) Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter 11:3115–3124PubMedCrossRefGoogle Scholar
- 121.Adamcik J, Mezzenga R (2012) Study of amyloid fibrils via atomic force microscopy. Curr Opin Colloid Interface Sci 17:369–376CrossRefGoogle Scholar
- 122.Usov I, Adamcik J, Mezzenga R (2013) Polymorphism in bovine serum albumin fibrils: morphology and statistical analysis. Faraday Discuss 166:151–162PubMedCrossRefGoogle Scholar
- 123.Usov I, Mezzenga R (2014) Correlation between nanomechanics and polymorphic conformations in amyloid fibrils. ACS Nano 8:11035–11041PubMedCrossRefGoogle Scholar
- 124.Usov I, Mezzenga R (2015) FiberApp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 48:1269–1280CrossRefGoogle Scholar
- 125.Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4:4426–4429PubMedCrossRefGoogle Scholar
- 126.Cui H, Hodgdon TK, Kaler EW, Abezgaous L, Danino D, Lubovsky M, Talmon Y, Pochan DJ (2007) Elucidating the assembled structure of amphiphiles in solution via cryogenic-transmission electron microscopy. Soft Matter 3:945–955CrossRefGoogle Scholar
- 127.Castelletto V, Hamley IW, Perez J, Abezgauz L, Danino D (2010) Fibrillar superstructure from extended nanotapes formed by a collagen-stimulating peptide. Chem Commun 46:9185–9187CrossRefGoogle Scholar
- 128.Castelletto V, Gouveia RJ, Connon CJ, Hamley IW, Seitsonen J, Ruokolainen J, Longo E, Siligardi G (2014) Influence of elastase on alanine-rich peptide hydrogels. Biomater Sci 2:867–874CrossRefGoogle Scholar
- 129.Hamley IW, Dehsorkhi A, Castelletto V, Walter MNM, Connon CJ, Reza M, Ruokolainen J (2015) Self-assembly and collagen stimulating activity of a peptide amphiphile incorporating a peptide sequence from lumican. Langmuir 31:4490–4495PubMedCrossRefGoogle Scholar
- 130.Castelletto V, Kirkham S, Hamley IW, Kowalczyk R, Rabe M, Reza M, Ruokolainen J (2016) Self-assembly of the toll-like receptor agonist macrophage-activating lipopeptide MALP-2 and of its constituent peptide. Biomacromolecules 17:631–640PubMedCrossRefGoogle Scholar