Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery

  • Michael A. Bruckman
  • Anna E. Czapar
  • Nicole F. SteinmetzEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1776)


Nature has designed nanosized particles, specifically viruses, equipped to deliver cargo to cells. We report the chemical bioconjugation and shape shifting of a hollow, rod-shaped tobacco mosaic virus (TMV) to dense spherical nanoparticles (SNPs). We describe methods to transform TMV rods to spheres, load TMV rods and spheres with the chemotherapeutic drug, doxorubicin (DOX), to deliver modified particles to breast cancer cells, and to determine the IC50 values of the plant virus-based drug delivery system.

Key words

Tobacco mosaic virus (TMV) Viral nanoparticles (VNPs) Bioconjugation Doxorubicin (DOX) Drug delivery Breast cancer 



This work was supported in part by a grant from the National Science Foundation (DMR 1452257 to N.F.S.).


  1. 1.
    Group, U.S.C.S.W. 2015. vol. 2016 (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute)Google Scholar
  2. 2.
    Marchal S, Hor AE, Millard M, Gillon V, Bezdetnaya L (2015) Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs 75:1601–1611CrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y et al (2015) Systemic delivery of an oncolytic adenovirus expressing decorin for the treatment of breast cancer bone metastases. Human gene therapy 26:813CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Patil S, Rao RS, Majumdar B (2015) Clinical trials with oncolytic viruses: current and future prospects. The journal of contemporary dental practice 16:i–iiPubMedGoogle Scholar
  5. 5.
    Giacca M, Zacchigna S (2012) Virus-mediated gene delivery for human gene therapy. Journal of controlled release 161:377–388CrossRefPubMedGoogle Scholar
  6. 6.
    Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43CrossRefPubMedGoogle Scholar
  7. 7.
    Bruckman MA et al (2014) Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 449:163–173CrossRefPubMedGoogle Scholar
  8. 8.
    Lee KL et al (2015) Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta biomaterialia 19:166–179CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Aljabali AA, Shukla S, Lomonossoff GP, Steinmetz NF, Evans DJ (2013) CPMV-DOX delivers. Molecular Pharmaceutics 10:3–10CrossRefPubMedGoogle Scholar
  10. 10.
    Wen AM, Le N, Zhou X, Steinmetz NF, Popkin DL (2015) Tropism of CPMV to professional antigen presenting cells enables a platform to eliminate chronic infections. ACS Biomaterials Science & Engineering 1:1050–1054CrossRefGoogle Scholar
  11. 11.
    Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B Biol Sci 354:531–535CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Koch C et al (2015) Modified TMV particles as beneficial scaffolds to present sensor enzymes. Frontiers in Plant Science 6:1137PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bromley KM, Patil AJ, Perriman AW, Stubbs G, Mann S (2008) Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. Journal of Materials Chemistry 18:4796–4801CrossRefGoogle Scholar
  14. 14.
    Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. Journal of the American Chemical Society 129:3104–3109CrossRefPubMedGoogle Scholar
  15. 15.
    Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Current opinion in biotechnology 22:901–908CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bruckman MA, Czapar AE, VanMeter A, Randolph LN, Steinmetz NF (2016) Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J Control Release 231:103CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bruckman MA, VanMeter A, Steinmetz NF (2015) Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method. ACS Biomater Sci Eng 1:13–18CrossRefPubMedGoogle Scholar
  18. 18.
    Czapar AE, Steinmetz NF (2016) In: Lu Z-R, Sakuma S (eds) Nanomaterials in pharmacology. Springer, New York, NY, pp 65–85CrossRefGoogle Scholar
  19. 19.
    Bruckman MA, Steinmetz NF (2014) Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV). Methods Mol Biol 1108:173–185CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael A. Bruckman
    • 1
    • 2
  • Anna E. Czapar
    • 3
  • Nicole F. Steinmetz
    • 1
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.NanoBio SystemsElyriaUSA
  3. 3.Department of PathologyCase Western Reserve UniversityClevelandUSA
  4. 4.Department of RadiologyCase Western Reserve UniversityClevelandUSA
  5. 5.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  6. 6.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  7. 7.Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations