Advertisement

Planarians and the History of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology

  • Sarah A. Elliott
  • Alejandro Sánchez Alvarado
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1774)

Abstract

Regeneration has captured human imagination for much of recorded history. Its sociological influence is evident in ancient and modern folklore, art, politics, and even language. In many ways, the study of regeneration helped establish the field of biology as a legitimate scientific discipline. Furthermore, regeneration research yielded critical insights that challenged flawed scientific models and uncovered fundamental principles underpinning the workings of life on this planet. This chapter details some ways in which the study of animal regeneration—with special emphasis on planarian regeneration—influenced the evolution of thought in biology. This includes contributions to the discovery of stem cells, the nature of heredity, and key concepts in pattern formation.

Key words

Planarians Regeneration Embryology Genetics History Paradigm shifts Preformation Entwicklungsmechanik Stem cells Morphogenesis Polarity Gradients Fields Popular culture 

Notes

Acknowledgments

We thank Drs. Jochen Rink and Hanh Thi-Kim Vu for critical reading of the manuscript and many insightful suggestions that improved it. We thank Drs. Harold M. Elliott, Carlos Guerrero Hernández, Kazutaka Hosoda, Longhua Guo, Andrés Romero-Carvajal, Nobuo Ueda, Marina Venero-Galanternik, and Shigeki Watanabe for compelling discussions regarding the cultural significance of regeneration from ancient to modern times. We thank Rose Owens for obtaining electronic copies of many works cited, and Dr. Brian K. Hall for sharing numerous articles pertaining to C.H. Waddington. We also thank Jordan Hensley for technical computer assistance. A.S.A. is supported by NIH grant R37GM057260. A.S.A. is a Howard Hughes Medical Institute and Stowers Institute for Medical Research investigator.

References

  1. 1.
    Andrews CAR (1994) Amulets of Ancient Egypt. The British Museum Press, LondonGoogle Scholar
  2. 2.
    Hill JS (1984) The Phoenix. Relig Lit 16(2):61–66Google Scholar
  3. 3.
    Hesiod H, Evelyn-White H (1914) The Homeric hymns and Homerica. Harvard University Press, CambridgeGoogle Scholar
  4. 4.
    Homer FR (1996) Odyssey. Viking Penguin, New YorkGoogle Scholar
  5. 5.
    Apollodorus FJ (1921) Apollodorus, The Library, Book 2. Harvard University Press, CambridgeGoogle Scholar
  6. 6.
    Seaton RC (1912) Apollonius Rhodius, Argonautica (Classical Library Volume 1). William Heinemann Ltd, LondonGoogle Scholar
  7. 7.
    Narayan RK (1972) The Ramayana. Penguin Books, New YorkGoogle Scholar
  8. 8.
    Goswami M, Gupta I, Jha P (2005) Sapta matrikas in Indian art and their significance in Indian sculpture and ethos: a critical study. Anistoriton 9Google Scholar
  9. 9.
    Wu CE, Jenner W (ca 1500–1582) Xi you ji. Foreign Language Press, BeijingGoogle Scholar
  10. 10.
    Milton J (1667) Paradise lost: a poem written in ten books. Peter Parker, Robert Boulter, & Matthias Walker, LondonGoogle Scholar
  11. 11.
    Anonymous (ca. 1563) Codex Telleriano-RemensisGoogle Scholar
  12. 12.
    Lee J, Gardiner D (2012) Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum). PLoS One 7(11):e50615PubMedPubMedCentralGoogle Scholar
  13. 13.
  14. 14.
    Monnet C (1797) La Fontaine de la Régénération: sur les débris de la Bastille, le 10 Août 1793. ParisGoogle Scholar
  15. 15.
    Robinson H (1836) General Jackson slaying the many headed monster. H.R. Robinson, New YorkGoogle Scholar
  16. 16.
    Traubel MH (1861) Triumph. M.H. Traubel, PhiladelphiaGoogle Scholar
  17. 17.
    Currier I (1861) The Hercules of the Union, slaying the great dragon of secession. Currier & Ives, New YorkGoogle Scholar
  18. 18.
    Aristotle, Balme DM, Gotthelf A, Peck AL (1965) Historia animalium. Heinemann\Harvard University Press, London\Cambridge, MAGoogle Scholar
  19. 19.
    Franklin B (1754) Join or die. The Pennsylvania GazetteGoogle Scholar
  20. 20.
    Cook KS (1996) Benjamin Franklin and the snake that would not die. Br Libr J 22(1):88–111Google Scholar
  21. 21.
    Queverdo FMI (1788) Régénération de la nation française en 1789: dédiée et présentée à l'Assemblée nationale le 13 juillet 1790 comme pouvant être le modèle d'un monument puplic Geoffroy, ParisGoogle Scholar
  22. 22.
    Aquinas T, Province FotED (1947) Summa Theologica. P. I, Q. 2, Art. 3. Benziger Bros, New YorkGoogle Scholar
  23. 23.
    Gesner C (1551–1558) Historiae animalium libri I-IV. Christoph Froschoverus, ZurichGoogle Scholar
  24. 24.
    Linnaeus C (1735) Systema naturae. Reprinted in 1964 by Nieuwkoop and B. De Graff, HollandGoogle Scholar
  25. 25.
    Blunt W, Stearn WT. (1973) Captain Cook's florilegium: a selection of engravings from the drawings of plants collected by Joseph Banks and Daniel Solander on Captain Cook's first voyage to the islands of the Pacific / with accounts of the voyage by Wilfred Blunt; and of the botanical explorations and prints by William T. Lion and Unicorn Press, Stearn\LondonGoogle Scholar
  26. 26.
    Haldane JS (1923) A lecture on the fundamental conceptions of biology. Br Med J 1(3244):359–363PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zohary D, Spiegel-Roy P (1975) Beginning of fruit groing in the Old World. Science 187:319–237PubMedGoogle Scholar
  28. 28.
    Pliny BJ, Riley HT (1856) The natural history of pliny, vol V. Henry G. Bohn, LondonGoogle Scholar
  29. 29.
    Albertus M, Resnick IM, Kitchell KF (2011) Questions concerning Aristotle's On Animals (The Fathers of the Church: Mediaeval Continuation, Volume 9). The Catholic University of America Press, WashingtonGoogle Scholar
  30. 30.
    Martin G, Coignard JB, Guerin HL (1733) Histoire de l'Académie Royale des Sciences, Tome II: Depuis 1686 jusqu'à son renouvellement en 1699, vol 2. Bibliothèque De M. J.-A, Barral ParisGoogle Scholar
  31. 31.
    de Réaumur M (1712) Sur les diverses reproductions qui se font dans les Ecrevisse, les Omars, les Crabes, etc. et entr'autres sur celles de leurs Jambes et de leurs Ecailles. Memoirs of the Royal Academie of Sciences:223–242Google Scholar
  32. 32.
    de Réaumur R (1742) Memoires pour servir a l'histoire des insectes, vol 6. de l'Imprimerie Royale, ParisGoogle Scholar
  33. 33.
    Lenhoff SG, Lenhoff HM, Trembley A (1986) Hydra and the birth of experimental biology, 1744: Abraham Trembley's Mémoires concerning the polyps. Boxwood Press, Pacific Grove, CAGoogle Scholar
  34. 34.
    Dinsmore CE (1995) Animal regeneration: from fact to concept. Bioscience 45(7):484–492Google Scholar
  35. 35.
    Bonnet C (1745) Traité d'Insectologie ou observations sur les Pucerons. Durand, ParisGoogle Scholar
  36. 36.
    Bonnet C (1781) Troisieme mémoire sur Ia reproduction des membres de Ia Salamandre aquatique. In: Œuvres d'histoire naturelle et de philosophie, vol Tome V, premiere partie. De l'Imprimerie de Samuel Fauche, Neuchâtel, pp 340–358Google Scholar
  37. 37.
    Bonnet C, Dalyell JG (1803) Memoirs on the reproduction of the members of the water newt. Memoir III. In: Tracts on the natural history of animals and vegetables, vol II. EdinburghGoogle Scholar
  38. 38.
    Needham J (1747) Nouvelles découvertes faites avec le microscope. LeideGoogle Scholar
  39. 39.
    Morgan TH (1901) Regeneration. Macmillan, New YorkGoogle Scholar
  40. 40.
    Spallanzani L (1768) Prodromo di un'opera da imprimersi sopra le riproduzioni animali dato in luce dall'abate Spallanzani. Nella stamperia di Giovanni Montanari, ModenaGoogle Scholar
  41. 41.
    Dinsmore CE (1991) Lazzaro Spallanzani: concepts of generation and regeneration. In: Dinsmore CE (ed) A history of regeneration research. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Tsonis PA, Fox TP (2009) Regeneration according to Spallanzani. Dev Dyn 238(9):2357–2363PubMedGoogle Scholar
  43. 43.
    Broussonet PMA (1789) Memoir on the regeneration of certain parts of the bodies of fishes. The Literary Magazine and British Review 3:111–113Google Scholar
  44. 44.
    T'uan Cê-S (860) Yu-Yang Tsa-Tsu TaiwanGoogle Scholar
  45. 45.
    Elliott SA, Sánchez Alvarado A (2012) The history and enduring contributions of planarians to the study of animal regeneration. WIREs Dev Biol 2(3):301–326Google Scholar
  46. 46.
    Wulf A (2012) Chasing venus: the race to measure the heavens. Alfred A. Knopf, New YorkGoogle Scholar
  47. 47.
    Pallas PS (1774) Spicilegia zoologica: quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Prostant apud Gottl. August, Lange, BeroliniGoogle Scholar
  48. 48.
    Brøndsted HV (1969) Planarian Regeneration. Pergamon Press, LondonGoogle Scholar
  49. 49.
    Goodrick-Clarke N (1999) Paracelsus. North Atlantic Books, BerkeleyGoogle Scholar
  50. 50.
    Hooke R (1665) Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. Jo. Martyn and Ja. Allestry, Printers to the Royal Society, LondonGoogle Scholar
  51. 51.
    Hartsoeker N (1694) Essay de dioptrique. Jean Anisson, ParisGoogle Scholar
  52. 52.
    Oppenheimer JM (1967) Analysis of development: problems, concepts and their history. In: Essays in the history of embryology and biology. M.I.T. Press, Cambridge, MA, pp 117–172Google Scholar
  53. 53.
    Baker JR (1952) Abraham Trembley of Geneva, scientist and philosopher. Edward Arnold & Co, London, pp 1710–1784Google Scholar
  54. 54.
    Dalyell JG (1814) Observations on some interesting phenomena in animal physiology, exhibited by several species of Planariae. Illustrated by coloured figures of living animals. Archibald Constable, EdinburghGoogle Scholar
  55. 55.
    Odelberg SJ (2004) Unraveling the molecular basis for regenerative cellular plasticity. PLoS Biol 2(8):E232PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bonnet C (1764) Contemplation de la nature, vol 1. Chez Marc-Michel Rey, AmsterdamGoogle Scholar
  57. 57.
    Weismann A (1892) Das Keimplasma: Eine Theorie der Verebung. Gustav Fischer, JenaGoogle Scholar
  58. 58.
    Aristotle PA (1910) De generatione animalium. Clarendon Press, OxfordGoogle Scholar
  59. 59.
    Harvey W (1651) Exercitationes de generatione animalium. O. Pulleyn, LondonGoogle Scholar
  60. 60.
    Darwin CR (1839) Narrative of the surveying voyages of His Majesty's Ships Adventure and Beagle between the years 1826 and 1836, describing their examination of the southern shores of South America, and the Beagle's circumnavigation of the globe: journal and remarks. Henry Colburn, London, pp 1832–1836Google Scholar
  61. 61.
    Darwin CR, Wallace AR (1858) On the tendency of species to form varieties, and on the perpetuation of varieties by natural means of selection. Proceedings of the meeting of the Linnean Society held on July 1st, 1858. J Proc Linn Soc Lond Zool 3:54–56Google Scholar
  62. 62.
    Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  63. 63.
    Maienschein J (1991) The origins of Entwicklungsmechanik. Dev Biol 7:43–61Google Scholar
  64. 64.
    Lenhoff HM, Lenhoff SG (1984) Tissue grafting in animals: its discovery in 1742 by Abraham Trembley as he experimented with Hydra. Biol Bull 166:1–10Google Scholar
  65. 65.
    Baker JR (1953) The cell-theory: a restatement, history, and critique; Part IV: The multiplication of cells. Q J Microsc Sci 94:407–440Google Scholar
  66. 66.
    Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1(1):E13–E15PubMedGoogle Scholar
  67. 67.
    Virchow R (1859) Die Cellularpathologie in ihrer Begründung auf physiologischer und pathologischer Gewebeleh. Hirschwald, BerlinGoogle Scholar
  68. 68.
    von Kölliker A (1844) Entwickelungsgeschichte der Cephalopoden. Meyer und Zeller, ZürichGoogle Scholar
  69. 69.
    Schwann T (1847) Microscopical researches into the accordance in the structure and growth of animals and plants. (trans: Smith H). Sydenham Society, LondonGoogle Scholar
  70. 70.
    Haeckel E (1877) Anthropogenie. Wilhelm Engelmann, LeipzigGoogle Scholar
  71. 71.
    Ramalho-Santos M, Willenbring H (2007) On the origin of the term "stem cell". Cell Stem Cell 1(1):35–38PubMedGoogle Scholar
  72. 72.
    Maehle AH (2011) Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 65(4):359–378PubMedPubMedCentralGoogle Scholar
  73. 73.
    Häcker V (1892) Die Kerntheilungsvorgänge bei der Mesoderm- und Entodermbildung von Cyclops. Arch Mikrosk Anat 39:556–581Google Scholar
  74. 74.
    Boveri T (1892) Ueber die Entstehung des Gegensatzes zwischen den Geschlechtszellen und den somatischen Zellen bei Ascaris megalocephala, nebst Bemerkungen zur Entwicklungsgeschichte der Nematoden. Sitzungsberichte der Gesellschaft für Morphologie und Physiologie in München 8:114–125Google Scholar
  75. 75.
    Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5(2):161–174Google Scholar
  76. 76.
    Kleinenberg N (1872) Hydra: Eine anatomisch-entwicklungs-geschichtliche Untersuchung. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  77. 77.
    Randolph H (1891) Regeneration of the tail in Lumbriculus. Zool Anz 14:154–156Google Scholar
  78. 78.
    Randolph H (1892) The regeneration of the tail in Lumbriculus. J Morphol 7:317–344Google Scholar
  79. 79.
    Sugio M, Yoshida-Noro C, Ozawa K, Tochinai S (2012) Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Dev Growth Differ 54(4):439–450PubMedGoogle Scholar
  80. 80.
    Goujon E (1869) Recherches expérimentales sur les propriétés physiologiques de la moelle des os. J Anat Physiol 6:399–412Google Scholar
  81. 81.
    Cooper B (2011) The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Proc (Bayl Univ Med Cent) 24(2):115–118Google Scholar
  82. 82.
    Coutu DL, François M, Galipeau J (2011) Mesenchymal stem cells and tissue repair. In: Strunk DSAD (ed) Regenerative therapy using blood-derived stem cells. Humana Press, New York, pp 35–52Google Scholar
  83. 83.
    Iijima I (1884) Untersuchungen über den Bau und die Entwicklungsgeschichte der Süswasser-Dendrocoelen (Tricladen). Z Wiss Zool 40:359–464Google Scholar
  84. 84.
    Keller J (1894) Die ungeschlechtliche Fortpflanzung der Süsswasserturbellarien. Jen Zeit Naturw 94:3823–3827Google Scholar
  85. 85.
    Buchanan J (1933) Regeneration in Phagocata gracilis (Leidy). Physiol Zool 6(2):185–204Google Scholar
  86. 86.
    Curtis WC (1902) The life history, the normal fission, and the reproductive organs of Planaria maculata. Proc Boston Soc Natl Hist 30:515–559Google Scholar
  87. 87.
    Lillie FR (1901) Notes on regeneration and regulation in planarians (continued). Am J Physiol 6:129–141Google Scholar
  88. 88.
    Haeckel E (1869) Zur entwicklungsgeschichte der siphonophoren. Natuurkundige verhandlingen uitg door het Provinciaal Utrechtsch genootschap van kunsten en wetenschappen, vol nieuwe reeks, 1 deel, 6 stuk. C. van der Post, jr., UtrechtGoogle Scholar
  89. 89.
    Driesch H (1891) Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Z Wiss Zool 53:160–178Google Scholar
  90. 90.
    Wilson EB (1893) Amphioxus and the mosaic theory of development. Jour Morph 8(3):579–638Google Scholar
  91. 91.
    Morgan TH (1895) The formation of the fish embryo. J Morphol 10:419–472Google Scholar
  92. 92.
    Hertwig O (1893) Über den Wert der ersten Furchungszellen für die Organbildung des Embryo. Arch f mikr Anat 42Google Scholar
  93. 93.
    Morgan TH (1895) Half-embryos and Whole-embryos from one of the first two blastomeres of the frog's egg. Anat Anz 10:623–628Google Scholar
  94. 94.
    Spemann H. (1900) Experimentelle Erzeugung zweiköpfiger Embryonen. Sitzber d Phys Med Gesell Wurzburg 2–9Google Scholar
  95. 95.
    Randolph H (1897) Observations and experiments on regeneration in planarians. Arch Entw Mech Org 5:352–372Google Scholar
  96. 96.
    Morgan TH (1898) Experimental studies of the regeneration of Planaria maculata. Arch Entw Mech Org 7:364–397Google Scholar
  97. 97.
    Brøndsted HV (1955) Planarian regeneration. Biol Rev 30:65–126Google Scholar
  98. 98.
    Spemann H (1918) Über die Determination der ersten Organanlagen des Amphibienembryo I–VI. 43 (4):448–555Google Scholar
  99. 99.
    Gilbert SF (2000) Axis formation in amphibians: the phenomenon of the organizer. Developmental biology, 6th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  100. 100.
    Spemann H, Mangold H (1924) Über induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux Arch Entwickl Mech Org 100:599–638Google Scholar
  101. 101.
    Morgan TH (1901) Growth and regeneration in Planaria lugubris. Arch Entw Mech Org 13:179–212Google Scholar
  102. 102.
    Sengel C (1960) Culture in vitro de blastèmes de régénération de Planaires. J Embryol Exp Morphol 8:468–476Google Scholar
  103. 103.
    Newmark PA, Wang Y, Chong T (2008) Germ cell specification and regeneration in planarians. Cold Spring Harb Symp Quant Biol 73:573–581. https://doi.org/10.1101/sqb.2008.73.022 CrossRefPubMedGoogle Scholar
  104. 104.
    Colucci VL (1891) Sulla rigenerazione parziale dell’occhio nei Tritoni-Istogenesi e sviluppo. Studio sperimentale. Mem R Acad Sci 1st Bologna Ser 51:593–629Google Scholar
  105. 105.
    Wolff G (1895) Entwicklungsphysiologische Studien. I. Die Regeneration der Urodelenlinse. Arch Entw Mech Org 1:380–390Google Scholar
  106. 106.
    Rose C, Shostak S (1968) The transformation of gastrodermal cells to neoblasts in regenerating Phagocata gracilis (Leidy). Exp Cell Res 50(3):553–561PubMedGoogle Scholar
  107. 107.
    Woodruff LS, Burnett AL (1965) The origin of the blastemal cells in Dugesia tigrina. Exp Cell Res 38:295–305PubMedGoogle Scholar
  108. 108.
    Gremigni V, Miceli C (1980) Cytophotometric evidence for cell 'transdifferentiation' in planarian regeneration. Wilhelm Roux's Archives 188:107–113Google Scholar
  109. 109.
    Reddien PW, Sánchez Alvarado A (2004) Fundamentals of Planarian Regeneration. Annu Rev Cell Dev Biol 20:725–757Google Scholar
  110. 110.
    Baguñà J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56(1–3):19–37Google Scholar
  111. 111.
    Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223(1–2):67–84. https://doi.org/10.1007/s00427-012-0426-4 CrossRefGoogle Scholar
  112. 112.
    Bardeen CR, Baetjer FH (1904) The inhibitive action of the Roentgen rays on regeneration in planarians. J Exp Zoöl 1:191–195Google Scholar
  113. 113.
    Dubois F, Wolff E (1947) Sur une méthode d'irradiation localisée permettant de mettre en évidence la migration des cellules de régénération chez les planaires. Société de Biologie Strasbourg 141:903–906Google Scholar
  114. 114.
    Dubois F (1949) Contribution á l ‘ètude de la migration des cellules de règènèration chez les Planaires dulcicoles. Bull Biol Fr Belg 83:213–283Google Scholar
  115. 115.
    Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86Google Scholar
  116. 116.
    Reddien PW (2013) Specialized progenitors and regeneration. Development 140(5):951–957. https://doi.org/10.1242/dev.080499 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Aboukhatwa E, Aboobaker AA (2015) An Introduction to planarians and their stem cells. In: eLS. John Wiley & Sons, Ltd, ChichesterGoogle Scholar
  118. 118.
    Roberts-Galbraith RH, Newmark PA (2015) On the organ trail: insights into organ regeneration in the planarian. Curr Opin Genet Dev 32C:37–46. https://doi.org/10.1016/j.gde.2015.01.009 CrossRefGoogle Scholar
  119. 119.
    Adler CE, Sánchez Alvarado A (2015) Types or states? Cellular dynamics and regenerative potential. Trends Cell Biol 25(11):687–696. https://doi.org/10.1016/j.tcb.2015.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Guedelhoefer OC, Sánchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139(19):3510–3520. https://doi.org/10.1242/dev.082099 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332(6031):811–816. https://doi.org/10.1126/science.1203983 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Gurley KA, Sánchez Alvarado A (2008) Stem cells in animal models of regeneration. In StemBook. Harvard Stem Cell Institute, Cambridge, MAGoogle Scholar
  123. 123.
    Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185. https://doi.org/10.1016/j.devcel.2011.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    King RS, Newmark PA (2012) The cell biology of regeneration. J Cell Biol 196(5):553–562. https://doi.org/10.1083/jcb.201105099 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Brandt KAH (1877) Über Actinosphærium Eichhornii: Dissertation, HalleGoogle Scholar
  126. 126.
    Schneider A (1873) Untersuchungen über Plathelminthen. Jahrb Oberhess Ges Naturwiss 14:69–81Google Scholar
  127. 127.
    Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F.C.W. Vogel, LeipzigGoogle Scholar
  128. 128.
    Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2(1):72–75. https://doi.org/10.1038/35048077 CrossRefPubMedGoogle Scholar
  129. 129.
    Boveri T (1889) Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. Sitz Gesel Morph u Physiol Müchen 5:73–83Google Scholar
  130. 130.
    Boveri T (1902) Über Mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandlungen der Physikalische-medizinischen Gesellschaft zu Würzburg 35:67–90Google Scholar
  131. 131.
    Laubichler MD, Davidson EH (2008) Boveri's long experiment: sea urchin merogones and the establishment of the role of nuclear chromosomes in development. Dev Biol 314(1):1–11. https://doi.org/10.1016/j.ydbio.2007.11.024 CrossRefPubMedGoogle Scholar
  132. 132.
    Maderspacher F (2008) Theodor Boveri and the natural experiment. Curr Biol 18(7):R279–R286. https://doi.org/10.1016/j.cub.2008.02.061 CrossRefPubMedGoogle Scholar
  133. 133.
    Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39Google Scholar
  134. 134.
    Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251Google Scholar
  135. 135.
    Weismann A (1885) Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Gustav Fischer, JenaGoogle Scholar
  136. 136.
    Morgan TH (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J Exp Zool 11(4):365–413Google Scholar
  137. 137.
    Morgan TH (1908) Some further records concerning the physiology of regeneration in Tubularia. Biol Bulletin 14(3):149–162Google Scholar
  138. 138.
    Morgan TH (1903) Darwinism in the light of modern criticism. Harper's Monthly Magazine 106(633):476–479Google Scholar
  139. 139.
    Esposito M (2013) Weismann versus morgan revisited: clashing interpretations on animal regeneration. J Hist Biol 46(3):511–541. https://doi.org/10.1007/s10739-012-9341-9 CrossRefPubMedGoogle Scholar
  140. 140.
    de Vries H (1901) Die mutationstheorie. Versuche und beobachtungen über die entstehung von arten im pflanzenreich. Verlag Von Veit & Comp, LeipzigGoogle Scholar
  141. 141.
    Allen GE (1969) Hugo de Vries and the reception of the mutation theory. J Hist Biol 2(1):55–87Google Scholar
  142. 142.
    Kenney DE, Borisy GG (2009) Thomas Hunt Morgan at the marine biological laboratory: naturalist and experimentalist. Genetics 181:841–846PubMedPubMedCentralGoogle Scholar
  143. 143.
    Morgan TH (1910) Sex limited inheritance in drosophila. Science 32(812):120–122. https://doi.org/10.1126/science.32.812.120 CrossRefPubMedGoogle Scholar
  144. 144.
    Sturtevant AH (1959) Thomas Hunt Morgan, 1866–1945. Biogr Mem Natl Acad Sci 33:283–325Google Scholar
  145. 145.
    Aristotle OW (1882) On the parts of animals. K. Paul, Trench & Company, LondonGoogle Scholar
  146. 146.
    Allman GJ (1864) Report on the present state of our knowledge of the reproductive system in the Hydroida. Rep 33rd Meet Brit Ass Adv Sci 1863:351–426Google Scholar
  147. 147.
    Spencer H (1864) The principles of biology, vol I. Williams and Norgate, EdinburghGoogle Scholar
  148. 148.
    Churchill FB (1991) Regeneration. In: Dinsmore CE (ed) A history of regeneration research. Cambridge University Press, Cambridge, pp 1885–1901Google Scholar
  149. 149.
    Wolpert L (1991) Morgan's ambivalence: a history of gradients and regeneration. In: Dinsmore CE (ed) A history of regeneration research. Cambridge University Press, Cambridge, pp 201–217Google Scholar
  150. 150.
    Boveri T (1901) Über die Polarität des Seeigel-Eies. Verk phys-med Ges Würzburg, NF 31 34:145–170Google Scholar
  151. 151.
    Morgan TH (1897) Regeneration in Allolobophora foetida. Archiv für Entwicklungsmechanik der Organismen 5(3):570–586Google Scholar
  152. 152.
    Morgan TH (1905) "Polarity" considered as a phenomenon of gradation of materials. J Exp Zool 2:495–506Google Scholar
  153. 153.
    Wolpert L (1986) Gradients, position and pattern: a history. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, Cambridge, pp 347–362Google Scholar
  154. 154.
    Morgan TH (1904) Regeneration of heteromorphic tails in posterior pieces of Planaria simplicissima. J Exp Zoöl 1:385–393Google Scholar
  155. 155.
    Morgan TH (1904) Notes on Regeneration. The limitation of the regenerative power of Dendrocoelum lacteum. Biol Bull 6:159–163Google Scholar
  156. 156.
    Child CM (1906) Contributions towards a theory of regulation. 1. The significance of the different methods of regulation in Turbellaria. Arch Entw Mech Org 20(3):380–426Google Scholar
  157. 157.
    Lewis WH (1904) Experimental studies on the development of the eye in Amphibia. I. On the origin of the lens in Rana palustris. Am J Anat 3:505–536Google Scholar
  158. 158.
    Browne EN (1909) The production of new hydranths in Hydra by the insertion of small grafts. J Exp Zool 7:1–23Google Scholar
  159. 159.
    Oppenheimer JM (1991) Curt Herbst's contributions to the concept of embryonic induction. Dev Biol 7:63–89Google Scholar
  160. 160.
    Huxley JS (1924) Early embryonic differentiation. Nature 113(2834):276–278Google Scholar
  161. 161.
    Huxley JS, De Beer GR (1934) The elements of experimental embryology. Cambridge Univeristy Press, CambridgeGoogle Scholar
  162. 162.
    Weiss P (1923) Die Regeneration der Urodelenextremität als Selbstdifferenzierung des Organrestes. Naturwissenschaften 11(31):669–677Google Scholar
  163. 163.
    De Robertis EM, Morita EA, Cho KW (1991) Gradient fields and homeobox genes. Development 112(3):669–678PubMedGoogle Scholar
  164. 164.
    Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantation zwischen Triton cristatus und taeniatus. Archiv für Entwicklungsmechanik der Organismen 48(4):533–570Google Scholar
  165. 165.
    Gurwitsch A (1922) Über den Begriff des Embryonalen feldes. Archiv für Entwicklungsmechanik der Organismen 51(1):383–415Google Scholar
  166. 166.
    Spemann H (1938) Embryonic development and induction. Yale University Press, New HavenGoogle Scholar
  167. 167.
    Lus J (1924) Studies on regeneration and transplantation in Turbellaria. I. Some considerations on polarity and heteromorphosis in fresh water planarians. Bull Mosc Soc Nat Biol SerGoogle Scholar
  168. 168.
    Lus J (1926) Regenerationsversuche an marinen Tricladen. Wilhelm Roux Arch Entwickl Mech Org 108(2):203–227PubMedGoogle Scholar
  169. 169.
    Child CM (1941) Patterns and problems of development. The University of Chicago Press, ChicagoGoogle Scholar
  170. 170.
    Brachet J (1985) Early interactions between embryology and biochemistry. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, CambridgeGoogle Scholar
  171. 171.
    Bautzmann H, Holtfreter J, Spemann H, Mangold O (1932) Versuche zur Analyse der Induktionsmittel in der Embryonalentwicklung. Naturwissenschaften 20(51):971–974Google Scholar
  172. 172.
    Saxén L, Toivonen S (1985) Primary embryonic induction in retrospect. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, CambridgeGoogle Scholar
  173. 173.
    Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173(2):357–372. https://doi.org/10.1006/dbio.1996.0032 CrossRefPubMedGoogle Scholar
  174. 174.
    Horder TJ (2001) The organizer concept and modern embryology: Anglo-American perspectives. Int J Dev Biol 45(1):97–132PubMedGoogle Scholar
  175. 175.
    Mitman G, Fausto-Sterling A (1992) Whatever happened to planaria? C.M. Child and the physiology of inheritance. In: Clarke AF, Fujimura JH (eds) The right tools for the job: at work in twentieth-century life sciences. Princeton University Press, Princeton, NJ, pp 172–197Google Scholar
  176. 176.
    Sander K (1985) The role of genes in ontogenesis—evolving concepts from 1883 to 1983 as perceived by an insect embryologist. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, CambridgeGoogle Scholar
  177. 177.
    Russell ES (1985) A history of mouse genetics. Annu Rev Genet 19:1–28. https://doi.org/10.1146/annurev.ge.19.120185.000245 CrossRefPubMedGoogle Scholar
  178. 178.
    Allen G (1985) T.H. Morgan and the split between embryology and genetics. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, Cambridge, pp 1910–1935Google Scholar
  179. 179.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedGoogle Scholar
  180. 180.
    Gilbert SF (1996) Enzymatic adaptation and the entrance of molecular biology into embryology. In: Sarkar S (ed) The philosophy and history of molecular biology: new perspectives. Kluwer Academic Publishers, Dordrecht, pp 101–123Google Scholar
  181. 181.
    Hall BK (2008) From marshalling yards to landscapes to triangles to morphospace. Evol Biol 35(2):97–99Google Scholar
  182. 182.
    Waddington CH (1940) Organisers and Genes. Cambridge University Press, CambridgeGoogle Scholar
  183. 183.
    Waddington CH (1962) New patterns in genetics and development. Columbia University Press, New YorkGoogle Scholar
  184. 184.
    Hall BK (1992) Waddington's legacy in development and evolution. Am Zool 32:113–122Google Scholar
  185. 185.
    Gilbert SF (2000) Diachronic biology meets evo-devo: C. H. Waddington’s approach to evolutionary developmental biology. Am Zool 40:729–737Google Scholar
  186. 186.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72Google Scholar
  187. 187.
    Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39PubMedPubMedCentralGoogle Scholar
  188. 188.
    Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620. https://doi.org/10.1126/science.1179047 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Green JBA, Sharpe J (2015) Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142:1203–1211PubMedGoogle Scholar
  190. 190.
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47PubMedGoogle Scholar
  191. 191.
    Wolpert L (1989) Positional information revisited. Development 107(Suppl):3–12PubMedGoogle Scholar
  192. 192.
    Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125Google Scholar
  193. 193.
    Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7(6):1749–1756PubMedPubMedCentralGoogle Scholar
  194. 194.
    Driever W, Nusslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54(1):83–93PubMedGoogle Scholar
  195. 195.
    Driever W, Nusslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54(1):95–104PubMedGoogle Scholar
  196. 196.
    Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131(4):703–712. https://doi.org/10.1242/dev.01043 CrossRefPubMedGoogle Scholar
  197. 197.
    Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407. https://doi.org/10.1146/annurev-cellbio-092910-154148 CrossRefPubMedGoogle Scholar
  198. 198.
    De Robertis EM (2009) Spemann's organizer and the self-regulation of embryonic fields. Mech Dev 126(11–12):925–941. https://doi.org/10.1016/j.mod.2009.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Meinhardt H (2012) Turing's theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus 2(4):407–416. https://doi.org/10.1098/rsfs.2011.0097 CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW (2013) Muscle cells provide instructions for planarian regeneration. Cell Rep 4(4):633–641. https://doi.org/10.1016/j.celrep.2013.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Forsthoefel DJ, Newmark PA (2009) Emerging patterns in planarian regeneration. Curr Opin Genet Dev 19(4):412–420. https://doi.org/10.1016/j.gde.2009.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Adell T, Cebrià F, Saló E (2010) Gradients in planarian regeneration and homeostasis. Cold Spring Harb Perspect Biol 2(1):a000505. https://doi.org/10.1101/cshperspect.a000505 CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Reddien P (2011) Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends Genet 27(7):277–285. https://doi.org/10.1016/j.tig.2011.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Felix DA, Aboobaker AA (2010) The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet 6(4):e1000915. https://doi.org/10.1371/journal.pgen.1000915 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Blassberg RA, Felix DA, Tejada-Romero B, Aboobaker AA (2013) PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development 140(4):730–739. https://doi.org/10.1242/dev.082982 CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Chen CC, Wang IE, Reddien PW (2013) pbx is required for pole and eye regeneration in planarians. Development 140(4):719–729. https://doi.org/10.1242/dev.083741 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Scimone ML, Lapan SW, Reddien PW (2014) A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 10(1):e1003999. https://doi.org/10.1371/journal.pgen.1003999 CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Vogg MC, Owlarn S, Perez Rico YA, Xie J, Suzuki Y, Gentile L, Wu W, Bartscherer K (2014) Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev Biol 390(2):136–148. https://doi.org/10.1016/j.ydbio.2014.03.016 CrossRefGoogle Scholar
  209. 209.
    Hayashi T, Motoishi M, Yazawa S, Itomi K, Tanegashima C, Nishimura O, Agata K, Tarui H (2011) A LIM-homeobox gene is required for differentiation of Wnt-expressing cells at the posterior end of the planarian body. Development 138(17):3679–3688. https://doi.org/10.1242/dev.060194 CrossRefPubMedGoogle Scholar
  210. 210.
    Gurley KA, Rink JC, Sánchez AA (2008) Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319(5861):323–327. https://doi.org/10.1126/science.1150029 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319(5861):327–330. https://doi.org/10.1126/science.1149943 CrossRefPubMedGoogle Scholar
  212. 212.
    Iglesias M, Gomez-Skarmeta JL, Saló E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135(7):1215–1221. https://doi.org/10.1242/dev.020289 CrossRefPubMedGoogle Scholar
  213. 213.
    Rink JC, Gurley KA, Elliott SA, Sánchez Alvarado A (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326(5958):1406–1410. https://doi.org/10.1126/science.1178712 CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci U S A 106(52):22329–22334. https://doi.org/10.1073/pnas.0907464106 CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Lander R, Petersen CP (2016) Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. Elife 5. https://doi.org/10.7554/eLife.12850
  216. 216.
    Scimone ML, Cote LE, Rogers T, Reddien PW (2016) Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. Elife 5. https://doi.org/10.7554/eLife.12845
  217. 217.
    Petersen CP, Reddien PW (2009) A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106(40):17061–17066. https://doi.org/10.1073/pnas.0906823106 CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Gurley KA, Elliott SA, Simakov O, Schmidt HA, Holstein TW, Sánchez Alvarado A (2010) Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev Biol 347(1):24–39. https://doi.org/10.1016/j.ydbio.2010.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Sureda-Gomez M, Pascual-Carreras E, Adell T (2015) Posterior Wnts have distinct roles in specification and patterning of the planarian posterior region. Int J Mol Sci 16(11):26543–26554. https://doi.org/10.3390/ijms161125970 CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Meinhardt H (2004) Different strategies for midline formation in bilaterians. Nat Rev Neurosci 5(6):502–510. https://doi.org/10.1038/nrn1410 CrossRefPubMedGoogle Scholar
  221. 221.
    Meinhardt H (2009) Beta-catenin and axis formation in planarians. Bioessays 31(1):5–9. https://doi.org/10.1002/bies.080193 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sarah A. Elliott
    • 1
  • Alejandro Sánchez Alvarado
    • 2
  1. 1.Biotechnology BuzzKansas CityUSA
  2. 2.Stowers Insitute for Medical ResearchHoward Hughes Medical InstituteKansas CityUSA

Personalised recommendations