Advertisement

Photosynthetic Gas Exchange in Land Plants at the Leaf Level

  • Florian A. Busch
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1770)

Abstract

Leaf-level gas exchange enables insights into the physiology and in vivo biochemical processes of plants. Advances in infrared gas analysis have resulted in user-friendly off-the-shelf gas exchange systems that allow researchers to collect physiological measurements with the push of a few buttons. Here, I describe how to set up the gas exchange equipment and what to pay attention to while making measurements, and provide some guidelines on how to analyze and interpret the data obtained.

Key words

Gas exchange Photosynthesis Transpiration Conductance FvCB model RuBisCO Mitochondrial respiration Infrared gas analyzer 

Notes

Acknowledgments

I thank Ross Deans for helpful comments on this chapter.

References

  1. 1.
    Li-Cor (2012) Using the LI-6400 / LI-6400XT portable photosynthesis system, version 6. Li-Cor Biosciences, Lincoln, NEGoogle Scholar
  2. 2.
    Walz (2013) Portable gas exchange fluorescence system GFS-3000, 7th edn. Heinz Walz GmbH, EffeltrichGoogle Scholar
  3. 3.
    Li-Cor (2016) Using the LI-6800 portable photosynthesis system, version 1. Li-Cor Biosciences, Lincoln, NEGoogle Scholar
  4. 4.
    Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401CrossRefGoogle Scholar
  5. 5.
    Evans JR, Santiago LS (2014) PrometheusWiki Gold Leaf Protocol: gas exchange using LI-COR 6400. Funct Plant Biol 41(3):223–226. https://doi.org/10.1071/FP10900 CrossRefGoogle Scholar
  6. 6.
    Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39(6):1161–1163. https://doi.org/10.1111/pce.12641 CrossRefPubMedGoogle Scholar
  7. 7.
    Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90CrossRefGoogle Scholar
  8. 8.
    von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, CollingwoodGoogle Scholar
  9. 9.
    Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth Res 27(3):169–178PubMedGoogle Scholar
  10. 10.
    Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Sci 193–194:70–84. https://doi.org/10.1016/j.plantsci.2012.05.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30(9):1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x CrossRefPubMedGoogle Scholar
  12. 12.
    Mott KA, Peak D (2011) Alternative perspective on the control of transpiration by radiation. Proc Natl Acad Sci U S A 108(49):19820–19823. https://doi.org/10.1073/pnas.1113878108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Duursma RA (2015) Plantecophys - An R package for analysing and modelling leaf gas exchange data. PLoS One 10(11):e0143346. https://doi.org/10.1371/journal.pone.0143346 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD (2007) Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytol 176:402–414. https://doi.org/10.1111/j.1469-8137.2007.02182.x CrossRefPubMedGoogle Scholar
  15. 15.
    Gu LH, Pallardy SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ 33(11):1852–1874. https://doi.org/10.1111/j.1365-3040.2010.02192.x CrossRefPubMedGoogle Scholar
  16. 16.
    Busch FA, Sage RF (2017) The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol 213(3):1036–1051. https://doi.org/10.1111/nph.14258 CrossRefPubMedGoogle Scholar
  17. 17.
    Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27(2):137–153CrossRefGoogle Scholar
  18. 18.
    Flexas J, Diaz-Espejo A, Berry JA, Cifre J, Galmes J, Kaidenhoff R, Medrano H, Ribas-Carbo M (2007) Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J Exp Bot 58(6):1533–1543. https://doi.org/10.1093/jxb/erm027 CrossRefPubMedGoogle Scholar
  19. 19.
    Rodeghiero M, Niinemets U, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Plant Cell Environ 30(8):1006–1022. https://doi.org/10.1111/j.1365-3040.2007.001689.x CrossRefPubMedGoogle Scholar
  20. 20.
    Stinziano JR, Morgan PB, Lynch DJ, Saathoff AJ, McDermitt DK, Hanson DT (2017) The rapid ACi response: photosynthesis in the phenomic era. Plant Cell Environ 40(8):1256–1262. https://doi.org/10.1111/pce.12911 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research School of Biology and ARC Centre of Excellence for Translational PhotosynthesisThe Australian National UniversityActonAustralia

Personalised recommendations