Advertisement

Digital PCR pp 489-512 | Cite as

Phasing DNA Markers Using Digital PCR

  • John Regan
  • George Karlin-NeumannEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1768)

Abstract

Besides quantifying the absolute number of copies of known DNA targets, digital PCR can also be used to assess whether two nonpolymorphic gene sequences or two heterozygous markers reside on the same DNA molecule (i.e., are physically linked). Some useful linkage applications include: phasing variants to define a haplotype; genotyping of inversions; determining the presence of multimarker pathogenic bacteria in a metagenomic sample; and assessing DNA integrity. This chapter describes an efficient and cost-effective method for analyzing linkage of any two genetic sequences up to at least 200 Kb apart, including phasing of heterozygous markers such as that which occur abundantly in the cystic fibrosis transmembrane conductance regulator (CFTR) gene.

Key words

Phasing Linkage Haplotype Compound heterozygote Complex alleles Co-localization Genotyping inversions DNA integrity DNA sizing Large DNA isolation Digital PCR Droplet Digital PCR 

Notes

Acknowledgments

Steven McCarroll, Nolan Kamitaki, Tina Legler, Samuel Maars, Mario Caceres, and Svilen Tzonev, Niels Klitgord, and Samantha Cooper contributed to the knowledge presented in these protocols.

References

  1. 1.
    Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, Picton E, Dickenson R, Denis O, Johnson D, Chapin K (2009) Rapid detection of Staphylococcus Aureus and methicillin-resistant S. Aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 47(3):823–826. https://doi.org/10.1128/JCM.01884-08CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Muniesa M, Hammerl JA, Hertwig S, Appel B, Brussow H (2012) Shiga toxin-producing Escherichia Coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78(12):4065–4073. https://doi.org/10.1128/AEM.00217-12CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosell R, Karachaliou N (2016) Lung cancer: using ctDNA to track EGFR and KRAS mutations in advanced-stage disease. Nat Rev Clin Oncol 13(7):401–402. https://doi.org/10.1038/nrclinonc.2016.83CrossRefPubMedGoogle Scholar
  4. 4.
    Regan JF, Kamitaki N, Legler T, Cooper S, Klitgord N, Karlin-Neumann G, Wong C, Hodges S, Koehler R, Tzonev S, McCarroll SA (2015) A rapid molecular approach for chromosomal phasing. PLoS One 10(3):e0118270. https://doi.org/10.1371/journal.pone.0118270CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Puig M, Pacheco S, Izquierdo D, Regan JF, Karlin-Neumann G, Cáceres M (2016) Droplet digital PCR (ddPCR)-based validation and genotyping of human inversions. Eur J Hum Genet 24 E(Suppl. 1):353Google Scholar
  6. 6.
    Didelot A, Kotsopoulos SK, Lupo A, Pekin D, Li X, Atochin I, Srinivasan P, Zhong Q, Olson J, Link D, Laurent-Puig P, Blons H, Hutchison JB, Taly V (2013) Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem 59(5):815–823. https://doi.org/10.1373/clinchem.2012.193409CrossRefPubMedGoogle Scholar
  7. 7.
    Chen N, Schrijver I (2011) Allelic discrimination of cis-trans relationships by digital polymerase chain reaction: GJB2 (p.V27I/p.E114G) and CFTR (p.R117H/5T). Genetics in medicine: official journal of the American College of Medical Genetics 13(12):1025–1031. https://doi.org/10.1097/GIM.0b013e3182272e0bCrossRefGoogle Scholar
  8. 8.
    Paul P, Apgar J (2005) Single-molecule dilution and multiple displacement amplification for molecular haplotyping. BioTechniques 38(4):553–554, 556, 558–559CrossRefGoogle Scholar
  9. 9.
    Dear PH, Cook PR (1993) Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res 21(1):13–20CrossRefGoogle Scholar
  10. 10.
    McDonald OG, Krynetski EY, Evans WE (2002) Molecular haplotyping of genomic DNA for multiple single-nucleotide polymorphisms located kilobases apart using long-range polymerase chain reaction and intramolecular ligation. Pharmacogenetics 12(2):93–99CrossRefGoogle Scholar
  11. 11.
    Wetmur JG, Kumar M, Zhang L, Palomeque C, Wallenstein S, Chen J (2005) Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes. Nucleic Acids Res 33(8):2615–2619. https://doi.org/10.1093/nar/gki556CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wetmur JG, Chen J (2008) An emulsion polymerase chain reaction-based method for molecular haplotyping. Methods Mol Biol 410:351–361CrossRefGoogle Scholar
  13. 13.
    Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH, Ng SB, Alkan C, Qiu R, Eichler EE, Shendure J (2011) Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol 29(1):59–63. https://doi.org/10.1038/nbt.1740CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Digital Biology Center, Bio-Rad LaboratoriesPleasantonUSA

Personalised recommendations