Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing

  • Charlene Babra Waryah
  • Colette Moses
  • Mahira Arooj
  • Pilar BlancafortEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1767)


The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.


Genome editing CRISPR Zinc finger TALE Epigenome engineering 



C.M. is a recipient of the Hackett Postgraduate Research Scholarship from the University of Western Australia. M.A. is a recipient of the Curtin Strategic International Research Scholarship. This work was supported by the Harry Perkins Institute of Medical Research, the University of Western Australia, and the following grants awarded to P.B.: the Australian Research Council DP150104433, FT130101688, and FT130101767; the Cancer Council Western Australia Research Fellowship; the National Health and Medical Research Council grant APP1069308; the National Institutes of Health grants R01CA170370 and R01DA036906; and the National Breast Cancer Foundation NC-14-024. Charlene Babra Waryah and Colette Moses contributed equally to this work. The authors apologize to those whose important contributions were omitted due to space constraints.

Contributions: C.B.W., C.M., and P.B. wrote the review; M.A. conducted structural modeling for Figs. 1 and 2.

Conflict of interest: The authors declare no conflicts of interest. The authorship of this article complies with the Australian Code of Responsible Conduct of Research.


  1. 1.
    Waddington CH (1942) The epigenotype. Endeavour 1:18–20Google Scholar
  2. 2.
    Morris J (2001) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105PubMedCrossRefGoogle Scholar
  3. 3.
    McGhee J, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49(1):1115–1156PubMedCrossRefGoogle Scholar
  4. 4.
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260PubMedCrossRefGoogle Scholar
  5. 5.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201PubMedCrossRefGoogle Scholar
  7. 7.
    Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69PubMedCrossRefGoogle Scholar
  8. 8.
    Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837PubMedCrossRefGoogle Scholar
  9. 9.
    Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRefGoogle Scholar
  13. 13.
    Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schübeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326PubMedCrossRefGoogle Scholar
  15. 15.
    Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M (2016) DNA methylation on N 6-adenine in mammalian embryonic stem cells. Nature 532(7599):329–333PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19(6):959–966PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495PubMedGoogle Scholar
  18. 18.
    Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Baubec T, Ivánek R, Lienert F, Schübeler D (2013) Methylation-dependent and-independent genomic targeting principles of the MBD protein family. Cell 153(2):480–492PubMedCrossRefGoogle Scholar
  22. 22.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRefGoogle Scholar
  23. 23.
    Chédin F, Lieber MR, Hsieh C-L (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99(26):16916–16921PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A (2005) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemist 44(29):9899–9904CrossRefGoogle Scholar
  25. 25.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F (2013) Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159PubMedCrossRefGoogle Scholar
  28. 28.
    Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, Reik W, Surani MA, Adams IR, Meehan RR (2012) Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 139(19):3623–3632PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C, Boyle P, Epstein CB, Bernstein BE, Lengauer T (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, Sasaki H (2011) Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138(5):811–820PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  33. 33.
    Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101(19):7357–7362PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20(6):657–661PubMedCrossRefGoogle Scholar
  36. 36.
    Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15(11):703–708PubMedCrossRefGoogle Scholar
  37. 37.
    Kebede AF, Schneider R, Daujat S (2015) Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282(9):1658–1674PubMedCrossRefGoogle Scholar
  38. 38.
    Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56PubMedCrossRefGoogle Scholar
  39. 39.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedCrossRefGoogle Scholar
  40. 40.
    Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh T-Y, Peng W, Zhang MQ (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499PubMedCrossRefGoogle Scholar
  42. 42.
    Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304PubMedCrossRefGoogle Scholar
  43. 43.
    Miller JL, Grant PA (2013) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 61:289–317PubMedCrossRefGoogle Scholar
  44. 44.
    Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7(1):a019364PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29RPubMedCrossRefGoogle Scholar
  46. 46.
    Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhou H-L, Luo G, Wise JA, Lou H (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42(2):701–713PubMedCrossRefGoogle Scholar
  48. 48.
    Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290–294PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711PubMedCrossRefGoogle Scholar
  50. 50.
    Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194–1204PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  52. 52.
    Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70(1):81–120PubMedCrossRefGoogle Scholar
  54. 54.
    Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404(6781):1003–1007PubMedCrossRefGoogle Scholar
  55. 55.
    de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40(21):10596–10613. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stolzenburg S, Goubert D, Rots MG (2016) Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol 945:475–490PubMedCrossRefGoogle Scholar
  57. 57.
    Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113PubMedCrossRefGoogle Scholar
  58. 58.
    Hall DB, Struhl K (2002) The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 277(48):46043–46050PubMedCrossRefGoogle Scholar
  59. 59.
    Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P (2013) KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics 14(4):268–278PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Persikov AV, Osada R, Singh M (2009) Predicting DNA recognition by Cys2His2 zinc finger proteins. Bioinformatics 25(1):22–29PubMedCrossRefGoogle Scholar
  62. 62.
    Emerson RO, Thomas JH (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet 5(1):e1000325PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X (2014) TALE: a tale of genome editing. Prog Biophys Mol Biol 114(1):25–32PubMedCrossRefGoogle Scholar
  65. 65.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Miller J, McLachlan A, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN, Yang A, Albu M, Weirauch MT, Radovani E, Kim PM (2015) C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol 33(5):555–562PubMedCrossRefGoogle Scholar
  68. 68.
    Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31(2):532–550PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO (1996) Zif268 protein–DNA complex refined at 1.6 Å: a model system for understanding zinc finger–DNA interactions. Structure 4(10):1171–1180PubMedCrossRefGoogle Scholar
  71. 71.
    Moore M, Klug A, Choo Y (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci U S A 98(4):1437–1441PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Blancafort P, Steinberg SV, Paquin B, Klinck R, Scott JK, Cedergren R (1999) The recognition of a noncanonical RNA base pair by a zinc finger protein. Chem Biol 6(8):585–597PubMedCrossRefGoogle Scholar
  73. 73.
    Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252(5007):809PubMedCrossRefGoogle Scholar
  74. 74.
    Wu H, Yang W-P, Barbas CF (1995) Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A 92(2):344–348PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Isalan M, Choo Y, Klug A (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci U S A 94(11):5617–5621PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fairall L, Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366(6454):483–487PubMedCrossRefGoogle Scholar
  77. 77.
    Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D (2003) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemist 42(7):2137–2148CrossRefGoogle Scholar
  78. 78.
    Jantz D, Amann BT, Gatto GJ, Berg JM (2004) The design of functional DNA-binding proteins based on zinc finger domains. Chem Rev 104(2):789–800PubMedCrossRefGoogle Scholar
  79. 79.
    Elrod-Erickson M, Pabo CO (1999) Binding studies with mutants of Zif268. Contribution of individual side chains to binding affinity and specificity in the Zif268 zinc finger-DNA complex. J Biol Chem 274(27):19281–19285PubMedCrossRefGoogle Scholar
  80. 80.
    Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29(1):183–212PubMedCrossRefGoogle Scholar
  81. 81.
    Pavletich N, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707PubMedCrossRefGoogle Scholar
  82. 82.
    Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10(2):634–642PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263(5147):671–673PubMedCrossRefGoogle Scholar
  84. 84.
    Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A 91(23):11163–11167PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jamieson AC, Kim S-H, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemist 33(19):5689–5695CrossRefGoogle Scholar
  86. 86.
    Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276(31):29466–29478PubMedCrossRefGoogle Scholar
  87. 87.
    Segal DJ, Dreier B, Beerli RR, Barbas CF (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A 96(6):2758–2763PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cheng X, Boyer JL, Juliano R (1997) Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc Natl Acad Sci U S A 94(25):14120–14125PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Desjarlais JR, Berg JM (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 90(6):2256–2260PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Beerli RR, Segal DJ, Dreier B, Barbas CF (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95(25):14628–14633PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proc Natl Acad Sci U S A 97(13):7382–7387PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10(4):411–416PubMedCrossRefGoogle Scholar
  94. 94.
    Segal DJ, Barbas CF (2001) Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr Opin Biotechnol 12(6):632–637PubMedCrossRefGoogle Scholar
  95. 95.
    Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135–141PubMedCrossRefGoogle Scholar
  96. 96.
    Mandell JG, Barbas CF (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1(4):1637–1652PubMedCrossRefGoogle Scholar
  98. 98.
    Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 4(10):1471–1501PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5(4):791–810PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang L, Lin J, Zhang T, Xu K, Ren C, Zhang Z (2013) Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS One 8(5):e64687PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Iuchi S (2005) C2H2 zinc fingers as DNA binding domains. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, MA, pp 7–13CrossRefGoogle Scholar
  102. 102.
    Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70(1):313–340PubMedCrossRefGoogle Scholar
  103. 103.
    Beerli RR, Dreier B, Barbas CF (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Beltran A, Parikh S, Liu Y, Cuevas B, Johnson GL, Futscher BW, Blancafort P (2007) Re-activation of a dormant tumor suppressor gene maspin by designed transcription factors. Oncogene 26(19):2791–2798PubMedCrossRefGoogle Scholar
  105. 105.
    Beltran AS, Russo A, Lara H, Fan C, Lizardi PM, Blancafort P (2011) Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS One 6(9):e24595PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Beltran AS, Blancafort P (2011) Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs). Epigenetics 6(2):224–235PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Huisman C, Wisman GBA, Kazemier HG, van Vugt MA, van der Zee AG, Schuuring E, Rots MG (2013) Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by artificial transcription factors. Mol Oncol 7(3):669–679PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275(43):33850–33860PubMedCrossRefGoogle Scholar
  109. 109.
    Liu P-Q, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H, Li P-X, Chen B, Mendel MC (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 276(14):11323–11334PubMedCrossRefGoogle Scholar
  110. 110.
    Falke D, Fisher M, Ye D, Juliano R (2003) Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 31(3):e10–e10PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8(12):1427PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang B, Xiang S, Zhong Q, Yin Y, Gu L, Deng D (2012) The p16-specific reactivation and inhibition of cell migration through demethylation of CpG islands by engineered transcription factors. Hum Gene Ther 23(10):1071–1081PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Huisman C, van der Wijst MG, Falahi F, Overkamp J, Karsten G, Terpstra MM, Kok K, van der Zee AG, Schuuring E, Wisman GBA (2015) Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs. Epigenetics 10(5):384–396PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Hum Genet 58(7):421–427PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu G-L, Rots MG (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42(3):1563–1574PubMedCrossRefGoogle Scholar
  116. 116.
    Huisman C, Van Der Wijst MG, Schokker M, Blancafort P, Terpstra MM, Kok K, Van Der Zee AG, Schuuring E, Wisman GBA, Rots MG (2016) Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol Ther 24(3):536–547PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hilton IB, D'ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Jurkowska RZ, Jeltsch A (2010) Silencing of gene expression by targeted DNA methylation: concepts and approaches. Methods Mol Biol 649:149–161PubMedCrossRefGoogle Scholar
  119. 119.
    Xu G-L, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17(4):376–378PubMedCrossRefGoogle Scholar
  120. 120.
    Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A (2006) Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 35(1):100–112PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Nunna S, Reinhardt R, Ragozin S, Jeltsch A (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 9(1):e87703PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a–Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491PubMedCrossRefGoogle Scholar
  123. 123.
    Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12(24):2159–2166PubMedCrossRefGoogle Scholar
  124. 124.
    Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, Rots MG (2013) Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 11(9):1029–1039PubMedCrossRefGoogle Scholar
  125. 125.
    Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D (2010) KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6(3):e1000869PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P (2012) Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 40(14):6725–6740PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Van Der Gun B, Huisman C, Stolzenburg S, Kazemier H, Ruiters M, Blancafort P, Rots M (2013) Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer. Br J Cancer 108(4):881–886PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Grimmer MR, Stolzenburg S, Ford E, Lister R, Blancafort P, Farnham PJ (2014) Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res 42(16):10856–10868PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7(4):350–360PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Stolzenburg S, Beltran A, Swift-Scanlan T, Rivenbark A, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34(43):5427–5435PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Magnenat L, Blancafort P, Barbas CF (2004) In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J Mol Biol 341(3):635–649PubMedCrossRefGoogle Scholar
  133. 133.
    Beltran AS, Sun X, Lizardi PM, Blancafort P (2008) Reprogramming epigenetic silencing: artificial transcription factors synergize with chromatin remodeling drugs to reactivate the tumor suppressor mammary serine protease inhibitor. Mol Cancer Ther 7(5):1080–1090PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gregory DJ, Zhang Y, Kobzik L, Fedulov AV (2013) Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8(11):1205–1212PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Eisenstein M (2012) Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat Biotechnol 30(2):121–123PubMedCrossRefGoogle Scholar
  136. 136.
    Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, Zheng Z, Cotte J, Carpenito C, Wood T (2013) Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24(3):245–258PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Eisenstein M (2015) Disease: closing the door on HIV. Nature 528(7580):S8–S9PubMedCrossRefGoogle Scholar
  138. 138.
    Olena A (2017) First in vivo human genome editing to be tested in new clinical trial. LabX Media Group. Google Scholar
  139. 139.
    Mussolino C, Cathomen T (2011) On target? Tracing zinc-finger-nuclease specificity. Nat Methods 8(9):725–726PubMedCrossRefGoogle Scholar
  140. 140.
    Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R, Guschin D, Su H, Jovin IS, Kunis M, Hinkley S (2012) A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol Ther 20(8):1508–1515PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Garton M, Najafabadi HS, Schmitges FW, Radovani E, Hughes TR, Kim PM (2015) A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity. Nucleic Acids Res 43(19):9147–9157PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94(11):5525–5530PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Jantz D, Berg JM (2004) Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation. Proc Natl Acad Sci U S A 101(20):7589–7593PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A 100(21):12271–12276PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Durai S, Bosley A, Abulencia AB, Chandrasegaran S, Ostermeier M (2006) A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen 9(4):301–311PubMedCrossRefGoogle Scholar
  147. 147.
    Chaikind B, Kilambi KP, Gray JJ, Ostermeier M (2012) Targeted DNA methylation using an artificially bisected M. HhaI fused to zinc fingers. PLoS One 7(9):e44852PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Meister GE, Chandrasegaran S, Ostermeier M (2010) Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells. Nucleic Acids Res 38(5):1749–1759PubMedCrossRefGoogle Scholar
  149. 149.
    Ślaska-Kiss K, Tímár E, Kiss A (2012) Complementation between inactive fragments of SssI DNA methyltransferase. BMC Mol Biol 13(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Blancafort P, Magnenat L, Barbas CF (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21(3):269–274PubMedCrossRefGoogle Scholar
  151. 151.
    Blancafort P, Chen EI, Gonzalez B, Bergquist S, Zijlstra A, Guthy D, Brachat A, Brakenhoff RH, Quigley JP, Erdmann D (2005) Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc Natl Acad Sci U S A 102(33):11716–11721PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Klug A, Rhodes D (1987) ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Scie 12:464–469CrossRefGoogle Scholar
  153. 153.
    Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436PubMedCrossRefGoogle Scholar
  154. 154.
    Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218(1):127–136PubMedCrossRefGoogle Scholar
  155. 155.
    Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55PubMedCrossRefGoogle Scholar
  156. 156.
    Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12(1):37–43PubMedCrossRefGoogle Scholar
  157. 157.
    Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850):648–651PubMedCrossRefGoogle Scholar
  158. 158.
    Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318(5850):645–648PubMedCrossRefGoogle Scholar
  159. 159.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512PubMedCrossRefGoogle Scholar
  160. 160.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501–1501PubMedCrossRefGoogle Scholar
  161. 161.
    Jankele R, Svoboda P (2014) TAL effectors: tools for DNA Targeting. Brief Funct Genomics 13(5):409–419PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J-K, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069):720–723PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu J-K, Yan N (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22(10):1502PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Cong L, Zhou R, Y-c K, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA binding modules and transcriptional repressor domains. Nat Commun 24(3):968CrossRefGoogle Scholar
  166. 166.
    Moore R, Chandrahas A, Bleris L (2014) Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth Biol 3(10):708–716PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Meckler JF, Bhakta MS, Kim M-S, Ovadia R, Habrian CH, Zykovich A, Yu A, Lockwood SH, Morbitzer R, Elsäesser J (2013) Quantitative analysis of TALE–DNA interactions suggests polarity effects. Nucleic Acids Res 41(7):4118–4128PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Rogers JM, Barrera LA, Reyon D, Sander JD, Kellis M, Joung JK, Bulyk ML (2015) Context influences on TALE–DNA binding revealed by quantitative profiling. Nat Commun 6:7440PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Maréchal A, Langevin S, Benomari N, Bertonati C, Silva GH (2014) Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 42(8):5390–5402PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):429–435PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30(7):593–595PubMedCrossRefGoogle Scholar
  173. 173.
    Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6(5):e19722PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40(15):e117PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wang Z, Li J, Huang H, Wang G, Jiang M, Yin S, Sun C, Zhang H, Zhuang F, Xi JJ (2012) An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew Chem Int Ed 51(34):8505–8508CrossRefGoogle Scholar
  183. 183.
    Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40(W1):W117–W122PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC (2013) Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JSM, Zhu J-K, Mahfouz MM (2012) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78(4–5):407–416PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Ma AC, McNulty MS, Poshusta TL, Campbell JM, Martínez-Gálvez G, Argue DP, Lee HB, Urban MD, Bullard CE, Blackburn PR (2016) FusX: a rapid one-step transcription activator-like effector assembly system for genome science. Hum Gene Ther 27(6):451–463PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Ding Q, Lee Y-K, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12(2):238–251PubMedCrossRefGoogle Scholar
  189. 189.
    Ma AC, Lee HB, Clark KJ, Ekker SC (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8(5):e65259PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, K-i S, Miyamoto T, Sakamoto N, Matsuura S (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, Joung JK (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, Crawford GE, Hartemink AJ, Gersbach CA (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C, Thiruvengadam S, Sorolla A, Rashwan R, Mancera RL, Leisewitz A, Swift-Scanlan T, Corvalan AH, Blancafort P (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 7(37):60535–60554PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40(12):5368–5377PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41(4):2769–2778PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287(46):38427–38432PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Lo C-L, Choudhury SR, Irudayaraj J, Zhou FC (2017) Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics. Sci Rep 7:42047PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Ayer DE, Laherty CD, Lawrence QA, Armstrong AP, Eisenman RN (1996) Mad proteins contain a dominant transcription repression domain. Mol Cell Biol 16(10):5772–5781PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953PubMedCrossRefGoogle Scholar
  203. 203.
    Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439PubMedCrossRefGoogle Scholar
  204. 204.
    Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators. Genome Res 25(8):1158–1169PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696PubMedCrossRefGoogle Scholar
  207. 207.
    Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013) Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 9(3):e1002962PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Rinaldi FC, Doyle LA, Stoddard BL, Bogdanove AJ (2017) The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Res 45(11):6960–6970PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Miller JC, Zhang L, Xia DF, Campo JJ, Ankoudinova IV, Guschin DY, Babiarz JE, Meng X, Hinkley SJ, Lam SC (2015) Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 12(5):465–471PubMedCrossRefGoogle Scholar
  210. 210.
    Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110(52):21048–21053PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MA (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5):e63–e63PubMedCrossRefGoogle Scholar
  212. 212.
    Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH (2015) TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest 125(5):1998–2006PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mojica FJ, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36(1):244–246PubMedCrossRefGoogle Scholar
  215. 215.
    Jansen R, Embden J, Gaastra W, Schouls L (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575PubMedCrossRefGoogle Scholar
  216. 216.
    Mojica FJ, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182PubMedCrossRefGoogle Scholar
  217. 217.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. CrossRefPubMedGoogle Scholar
  218. 218.
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322(5909):1843–1845PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561PubMedCrossRefGoogle Scholar
  220. 220.
    Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663PubMedCrossRefGoogle Scholar
  221. 221.
    Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71PubMedCrossRefGoogle Scholar
  223. 223.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedCrossRefGoogle Scholar
  225. 225.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Nishimasu H, Ran F, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Naito Y, Hino K, Bono H, Ui-Tei K (2014) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    O’Brien A, Bailey TL (2014) GT-Scan: identifying unique genomic targets. Bioinformatics 30(18):2673–2675PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Pliatsika V, Rigoutsos I (2015) “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct 10(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One 9(9):e108424PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267–W271PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Benchling (2017) Quick and easy CRISPR designs. Google Scholar
  242. 242.
    Desktop Genetics (2017) CRISPR/Cas9 guide RNA design software. Google Scholar
  243. 243.
    Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531):423–427PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 42(19):e147PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt LP, Hejhal T, Catalano A, Busenhart P, Gonçalves AF, Brandt S (2015) A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest 125(4):1603–1619PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53. PubMedCrossRefGoogle Scholar
  250. 250.
    Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Ja B, Ja D, Marson A (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112:10437–10442PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588PubMedCrossRefGoogle Scholar
  253. 253.
    Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. elife 5:e19760PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):985–989PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Kim D, Kim J, Hur JK, Been KW, Yoon S-h, Kim J-S (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863–838PubMedCrossRefGoogle Scholar
  256. 256.
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Gao X, Tsang JC, Gaba F, Wu D, Lu L, Liu P (2014) Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42(20):e155–e155PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5(3):448–459CrossRefGoogle Scholar
  267. 267.
    Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3(6):940–947CrossRefGoogle Scholar
  268. 268.
    Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP, Lin S, Kiani S, Guzman CD, Wiegand DJ (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Med 12(4):326–328Google Scholar
  269. 269.
    Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N (2015) In vivo transcriptional activation using CRISPR-Cas9 in Drosophila. Genetics 201(2):433–442PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060–1065PubMedCrossRefGoogle Scholar
  272. 272.
    Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7(29):46545PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ, Rots MG (2016) Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7:12284PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Song J, Cano-Rodriquez D, Winkle M, Gjaltema RA, Goubert D, Jurkowski TP, Heijink IH, Rots MG, Hylkema MN (2017) Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 312(3):L334–L347PubMedCrossRefGoogle Scholar
  278. 278.
    Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44(12):5615–5628PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2017) Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res 45(4):1703–1713PubMedCrossRefGoogle Scholar
  280. 280.
    Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683PubMedCrossRefGoogle Scholar
  283. 283.
    Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. CrossRefPubMedGoogle Scholar
  289. 289.
    Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Disc 3:17018CrossRefGoogle Scholar
  290. 290.
    Kim SK, Kim H, Ahn W-C, Park K-H, Woo E-J, Lee D-H, Lee S-G (2017) Efficient transcriptional gene repression by type VA CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol 6(7):1273–1282PubMedCrossRefGoogle Scholar
  291. 291.
    Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521PubMedCrossRefGoogle Scholar
  292. 292.
    Juárez-Moreno K, Erices R, Beltran AS, Stolzenburg S, Cuello-Fredes M, Owen GI, Qian H, Blancafort P (2013) Breaking through an epigenetic wall: re-activation of Oct4 by KRAB-containing designer zinc finger transcription factors. Epigenetics 8(2):164–176PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5:e12677PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Vora S, Tuttle M, Cheng J, Church G (2016) Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 283(17):3181–3193PubMedCrossRefGoogle Scholar
  295. 295.
    Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1):339–350PubMedCrossRefGoogle Scholar
  296. 296.
    Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33(11):1159–1161PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 12(11):1051–1054PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Jamieson AC, Wang H, Kim S-H (1996) A zinc finger directory for high-affinity DNA recognition. Proc Natl Acad Sci U S A 93(23):12834–12839PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485. CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Altucci L, Rots MG (2016) Epigenetic drugs: from chemistry via biology to medicine and back. Clin Epigenetics 8(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Limsirichai P, Gaj T, Schaffer DV (2016) CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 24(3):499–507PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Fagan PR, Putatunda R, Young W-B, Khalili K (2015) CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 5:16277PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Kretzmann JA, Ho D, Evans CW, Plani-Lam JH, Garcia-Bloj B, Mohamed AE, O'Mara ML, Ford E, Tan DE, Lister R (2017) Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci 8(4):2923–2930PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Lara H, Wang Y, Beltran AS, Juárez-Moreno K, Yuan X, Kato S, Leisewitz AV, Fredes MC, Licea AF, Connolly DC (2012) Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 287(35):29873–29886PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Wang Y, Su H-h, Yang Y, Hu Y, Zhang L, Blancafort P, Huang L (2013) Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 21(2):358–367PubMedCrossRefGoogle Scholar
  306. 306.
    Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328–333. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Charlene Babra Waryah
    • 1
  • Colette Moses
    • 1
    • 2
  • Mahira Arooj
    • 1
    • 3
  • Pilar Blancafort
    • 1
    • 2
    Email author
  1. 1.Cancer Epigenetics GroupThe Harry Perkins Institute of Medical ResearchNedlands, PerthAustralia
  2. 2.School of Human SciencesThe University of Western AustraliaPerthAustralia
  3. 3.School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthAustralia

Personalised recommendations