CpG Islands pp 175-194 | Cite as

Experimental Design and Bioinformatic Analysis of DNA Methylation Data

  • Yulia Medvedeva
  • Alexander Shershebnev
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1766)

Abstract

DNA methylation is a crucial regulatory mechanism of gene expression, affected in many human pathologies. Therefore, it is not surprising that nowadays, in the era of high-throughput methods, a lot of data sets representing DNA methylation in various conditions are available and the amount of such data keeps growing. In this chapter, we discuss those aspects of experiment planning and data analysis, which we consider the most important for reliability and reproducibility of DNA methylation studies: usage of replicates, data quality control at various stages, selection of a statistical model, and incorporation of DNA methylation into the multi-omics analysis.

Key words

DNA methylation Next generation sequencing Data analysis Quality control Experiment planning 

Notes

Acknowledgments

Y.A.M.’s work was supported by RSF grant 15-14-30002, and A.S.’s work was supported by RSF grant 14-45-00065. Y.A.M. wrote the manuscript, and A.S. wrote sections about quality control and contributed to others.

References

  1. 1.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254.  https://doi.org/10.1038/ng1089 CrossRefPubMedGoogle Scholar
  2. 2.
    Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28(8):812–828.  https://doi.org/10.1101/gad.234294.113 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tomazou EM, Meissner A (2010) Epigenetic regulation of pluripotency. Adv Exp Med Biol 695:26–40.  https://doi.org/10.1007/978-1-4419-7037-4_3 CrossRefPubMedGoogle Scholar
  4. 4.
    Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115.  https://doi.org/10.1186/gb-2013-14-10-r115 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53(6):857–869.  https://doi.org/10.1016/j.neuron.2007.02.022 CrossRefPubMedGoogle Scholar
  6. 6.
    Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262.  https://doi.org/10.1038/nrg2045 CrossRefPubMedGoogle Scholar
  7. 7.
    Ladd-Acosta C, Fallin MD (2016) The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8(2):271–283.  https://doi.org/10.2217/epi.15.102 CrossRefPubMedGoogle Scholar
  8. 8.
    Desai M, Jellyman JK, Ross MG (2015) Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes 39(4):633–641.  https://doi.org/10.1038/ijo.2015.13 CrossRefGoogle Scholar
  9. 9.
    Zhong J, Agha G, Baccarelli AA (2016) The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res 118(1):119–131.  https://doi.org/10.1161/CIRCRESAHA.115.305206 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wüllner U, Kaut O, deBoni L, Piston D, Schmitt I (2016) DNA methylation in Parkinson’s disease. J Neurochem 139(Suppl 1):108–120.  https://doi.org/10.1111/jnc.13646 CrossRefPubMedGoogle Scholar
  11. 11.
    Sanchez-Mut JV, Gräff J (2015) Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci 9:347.  https://doi.org/10.3389/fnbeh.2015.00347 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8(9).  https://doi.org/10.1101/cshperspect.a019505
  13. 13.
    Klosin A, Lehner B (2016) Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr Opin Genet Dev 36:41–49.  https://doi.org/10.1016/j.gde.2016.04.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B (2017) Transgenerational transmission of environmental information in C. elegans. Science 356(6335):320–323.  https://doi.org/10.1126/science.aah6412 CrossRefPubMedGoogle Scholar
  15. 15.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303.  https://doi.org/10.1126/science.1210597 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garcia-Manero G, Stoltz ML, Ward MR, Kantarjian H, Sharma S (2008) A pilot pharmacokinetic study of oral azacitidine. Leukemia 22(9):1680–1684.  https://doi.org/10.1038/leu.2008.145 CrossRefPubMedGoogle Scholar
  17. 17.
    Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, Kantarjian H (2007) Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer 109(4):713–717.  https://doi.org/10.1002/cncr.22457 CrossRefPubMedGoogle Scholar
  18. 18.
    Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I (2016) Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060–1065.  https://doi.org/10.1038/nbt.3658 CrossRefPubMedGoogle Scholar
  19. 19.
    Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu G-L, Hu R (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009.  https://doi.org/10.1038/celldisc.2016.9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, Greenwood CMT (2016) An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biol 17:84.  https://doi.org/10.1186/s13059-016-0935-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Davis BM, Chao MC, Waldor MK (2013) Entering the era of bacterial epigenomics with single molecule real time DNA sequencing. Curr Opin Microbiol 16(2):192–198.  https://doi.org/10.1016/j.mib.2013.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17(1):208.  https://doi.org/10.1186/s13059-016-1066-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bock C, Tomazou EM, Brinkman AB, Müller F, Simmer F, Gu H, Jäger N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28(10):1106–1114.  https://doi.org/10.1038/nbt.1681 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877.  https://doi.org/10.1093/nar/gki901 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wachter E, Quante T, Merusi C, Arczewska A, Stewart F, Webb S, Bird A (2014) Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. elife 3:e03397.  https://doi.org/10.7554/eLife.03397 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Krebs AR, Dessus-Babus S, Burger L, Schübeler D (2014) High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. elife 3:e04094.  https://doi.org/10.7554/eLife.04094 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488.  https://doi.org/10.1126/science.1138341 CrossRefPubMedGoogle Scholar
  28. 28.
    Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H, Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T, Medvedeva YA, Testa AC, Lipovich L, Yip CW, Abugessaisa I, Mendez M, Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA, Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJ, Arner E, Hayashizaki Y, Carninci P, Forrest AR (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543(7644):199–204.  https://doi.org/10.1038/nature21374 CrossRefPubMedGoogle Scholar
  29. 29.
    Alam T, Medvedeva YA, Jia H, Brown JB, Lipovich L, Bajic VB (2014) Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes. PLoS One 9(10):e109443.  https://doi.org/10.1371/journal.pone.0109443 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481.  https://doi.org/10.1038/nature12433 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martinez-Arguelles DB, Lee S, Papadopoulos V (2014) In silico analysis identifies novel restriction enzyme combinations that expand reduced representation bisulfite sequencing CpG coverage. BMC Res Notes 7:534.  https://doi.org/10.1186/1756-0500-7-534 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guo H, Zhu P, Wu X, Li X, Wen L, Tang F (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135.  https://doi.org/10.1101/gr.161679.113 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J, Bock C (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10(8):1386–1397.  https://doi.org/10.1016/j.celrep.2015.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820.  https://doi.org/10.1038/nmeth.3035 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ernst J, Kellis M (2015) Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat Biotechnol 33(4):364–376.  https://doi.org/10.1038/nbt.3157 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Angermueller C, Lee HJ, Reik W, Stegle O (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 18(1):67.  https://doi.org/10.1186/s13059-017-1189-z CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Noordzij M, Tripepi G, Dekker FW, Zoccali C, Tanck MW, Jager KJ (2010) Sample size calculations: basic principles and common pitfalls. Nephrol Dial Transplant 25(5):1388–1393.  https://doi.org/10.1093/ndt/gfp732 CrossRefPubMedGoogle Scholar
  38. 38.
    Ziller MJ, Hansen KD, Meissner A, Aryee MJ (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12(3):230–232., 231 p. following 232.  https://doi.org/10.1038/nmeth.3152 CrossRefPubMedGoogle Scholar
  39. 39.
    Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Herrero J, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S (2016) Saturation analysis for whole-genome bisulfite sequencing data. Nat Biotechnol.  https://doi.org/10.1038/nbt.3524
  40. 40.
    Capra JA, Kostka D (2014) Modeling DNA methylation dynamics with approaches from phylogenetics. Bioinformatics 30(17):i408–i414.  https://doi.org/10.1093/bioinformatics/btu445 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32(10):1446–1453.  https://doi.org/10.1093/bioinformatics/btw026 CrossRefPubMedGoogle Scholar
  42. 42.
    Wright ML, Dozmorov MG, Wolen AR, Jackson-Cook C, Starkweather AR, Lyon DE, York TP (2016) Establishing an analytic pipeline for genome-wide DNA methylation. Clin Epigenetics 8:45.  https://doi.org/10.1186/s13148-016-0212-7 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stockwell PA, Chatterjee A, Rodger EJ, Morison IM (2014) DMAP: differential methylation analysis package for RRBS and WGBS data. Bioinformatics 30(13):1814–1822.  https://doi.org/10.1093/bioinformatics/btu126 CrossRefPubMedGoogle Scholar
  44. 44.
    Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705–719.  https://doi.org/10.1038/nrg3273 CrossRefPubMedGoogle Scholar
  45. 45.
    Park Y, Figueroa ME, Rozek LS, Sartor MA (2014) MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics 30(17):2414–2422.  https://doi.org/10.1093/bioinformatics/btu339 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dolzhenko E, Smith AD (2014) Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics 15:215.  https://doi.org/10.1186/1471-2105-15-215 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Panchin AY, Makeev VJ, Medvedeva YA (2016) Preservation of methylated CpG dinucleotides in human CpG islands. Biol Direct 11(1):11.  https://doi.org/10.1186/s13062-016-0113-x CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Robinson MD, Kahraman A, Law CW, Lindsay H, Nowicka M, Weber LM, Zhou X (2014) Statistical methods for detecting differentially methylated loci and regions. Front Genet 5:324.  https://doi.org/10.3389/fgene.2014.00324 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, Yang H, Wang T, Lee AY, Swanson SA, Zhang J, Zhu Y, Kim A, Nery JR, Urich MA, Kuan S, Yen C-A, Klugman S, Yu P, Suknuntha K, Propson NE, Chen H, Edsall LE, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W-Y, Chi NC, Antosiewicz-Bourget JE, Slukvin I, Stewart R, Zhang MQ, Wang W, Thomson JA, Ecker JR, Ren B (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5):1134–1148.  https://doi.org/10.1016/j.cell.2013.04.022 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jeong M, Sun D, Luo M, Huang Y, Challen GA, Rodriguez B, Zhang X, Chavez L, Wang H, Hannah R, Kim S-B, Yang L, Ko M, Chen R, Göttgens B, Lee J-S, Gunaratne P, Godley LA, Darlington GJ, Rao A, Li W, Goodell MA (2014) Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet 46(1):17–23.  https://doi.org/10.1038/ng.2836 CrossRefPubMedGoogle Scholar
  51. 51.
    Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S (2016) Information recovery from low coverage whole-genome bisulfite sequencing. Nat Commun 7:11306.  https://doi.org/10.1038/ncomms11306 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Klein HU, Hebestreit K (2016) An evaluation of methods to test predefined genomic regions for differential methylation in bisulfite sequencing data. Brief Bioinform 17(5):796–807.  https://doi.org/10.1093/bib/bbv095 CrossRefPubMedGoogle Scholar
  53. 53.
    Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, MSI B, Kawaji H, Lassmann T, Harbers M, ARR F, Bajic VB, Consortium F (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15:119.  https://doi.org/10.1186/1471-2164-15-119 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pardo LM, Rizzu P, Francescatto M, Vitezic M, Leday GGR, Sanchez JS, Khamis A, Takahashi H, van de Berg WDJ, Medvedeva YA, van de Wiel MA, Daub CO, Carninci P, Heutink P (2013) Regional differences in gene expression and promoter usage in aged human brains. Neurobiol Aging 34(7):1825–1836.  https://doi.org/10.1016/j.neurobiolaging.2013.01.005 CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang Y, Baheti S, Sun Z (2016) Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data. Brief Bioinform.  https://doi.org/10.1093/bib/bbw133
  56. 56.
    Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One 8(12):e81148.  https://doi.org/10.1371/journal.pone.0081148 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Medvedeva YA (2011) Algorithms for CpG islands search: new advantages and old problems. In: Mahdavi MM (ed) Bioinformatics – trends and methodologies. InTech, Rijeka.  https://doi.org/10.5772/22883 Google Scholar
  58. 58.
    Medvedeva YA, Fridman MV, Oparina NJ, Malko DB, Ermakova EO, Kulakovskiy IV, Heinzel A, Makeev VJ (2010) Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics 11:48.  https://doi.org/10.1186/1471-2164-11-48 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Issa J-P (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993.  https://doi.org/10.1038/nrc1507 CrossRefPubMedGoogle Scholar
  60. 60.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186.  https://doi.org/10.1038/ng.298 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Feinberg AP (2014) Epigenetic stochasticity, nuclear structure and cancer: the implications for medicine. J Intern Med 276(1):5–11.  https://doi.org/10.1111/joim.12224 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43(8):768–775.  https://doi.org/10.1038/ng.865 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Artemov AV, Mugue NS, Rastorguev SM, Zhenilo S, Mazur AM, Tsygankova SV, Boulygina ES, Kaplun D, Nedoluzhko AV, Medvedeva YA, Prokhortchouk EB (2017) Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions. Mol Biol Evol 5:msx156Google Scholar
  64. 64.
    Gravina S, Dong X, Yu B, Vijg J (2016) Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17(1):150.  https://doi.org/10.1186/s13059-016-1011-3 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27(11):1571–1572.  https://doi.org/10.1093/bioinformatics/btr167 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jin J, Lian T, Gu C, Yu K, Gao YQ, Su X-D (2016) The effects of cytosine methylation on general transcription factors. Sci Rep 6:29119.  https://doi.org/10.1038/srep29119 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schubeler D, Vinson C, Taipale J (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356:6337.  https://doi.org/10.1126/science.aaj2239 CrossRefGoogle Scholar
  68. 68.
    Jin S-G, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38(11):e125.  https://doi.org/10.1093/nar/gkq223 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Aran D, Hellman A (2013) DNA methylation of transcriptional enhancers and cancer predisposition. Cell 154(1):11–13.  https://doi.org/10.1016/j.cell.2013.06.018 CrossRefPubMedGoogle Scholar
  70. 70.
    Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, Reik W, Balasubramanian S (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8(10):1841–1851.  https://doi.org/10.1038/nprot.2013.115 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Consortium F, Forrest ARR, Carninci P, Rehli M, Sandelin A (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461.  https://doi.org/10.1038/nature12787 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Babenko VN, Chadaeva IV, Orlov YL (2017) Genomic landscape of CpG rich elements in human. BMC Evol Biol 17(Suppl 1):19.  https://doi.org/10.1186/s12862-016-0864-0 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, Consortium F, Drabløs F (2015) EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database 2015:bav067.  https://doi.org/10.1093/database/bav067 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232.  https://doi.org/10.1038/nmeth.3728 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jeddeloh JA, Greally JM, Rando OJ (2008) Reduced-representation methylation mapping. Genome Biol 9(8):231.  https://doi.org/10.1186/gb-2008-9-8-231 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yulia Medvedeva
    • 1
    • 2
    • 3
  • Alexander Shershebnev
    • 3
    • 4
  1. 1.Institute of BioengineeringResearch Center of Biotechnology, Russian Academy of ScienceMoscowRussia
  2. 2.Department of System Biology and BioinformaticsVavilov Institute of General Genetics, Russian Academy of ScienceMoscowRussia
  3. 3.Department of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.School of Public Health and Health SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations