Cell Line Models of Molecular Subtypes of Colorectal Cancer

  • Jennifer K. Mooi
  • Ian Y. Luk
  • John M. Mariadason
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1765)

Abstract

Colorectal cancer (CRC) is a genetically diverse disease necessitating the need for well-characterized and reproducible models to enable its accurate investigation. Recent genomic analyses have confirmed that CRC cell lines accurately retain the key genetic alterations and represent the major molecular subtypes of primary CRC, underscoring their value as powerful preclinical models. In this chapter we detail the important issues to consider when using CRC cell lines, the techniques used for their appropriate molecular classification, and the methods by which they are cultured in vitro and as subcutaneous xenografts in immune-compromised mice. A panel of commonly available CRC cell lines that have been characterized for key molecular subtypes is also provided as a resource for investigators to select appropriate models to address specific research questions.

Key words

Colorectal cancer cells Molecular subtype DNA profiling Chromosomal instability Microsatellite instability CpG island methylator phenotype Signaling pathways 

References

  1. 1.
    Shibata D, Peinado MA, lonov Y et al (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6(3):273–281CrossRefPubMedGoogle Scholar
  2. 2.
    Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627CrossRefPubMedGoogle Scholar
  3. 3.
    Issa J-P (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993CrossRefPubMedGoogle Scholar
  4. 4.
    Bellam N, Pasche B (2010) TGF-β signaling alterations and colon cancer. In: Pasche B (ed) Cancer genetics. Springer, Boston, MA, pp 85–103.  https://doi.org/10.1007/978-1-4419-6033-7_5 CrossRefGoogle Scholar
  5. 5.
    Cathomas G (2014) PIK3CA in colorectal cancer. Front Oncol 4:35.  https://doi.org/10.3389/fonc.2014.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Colussi D, Brandi G, Bazzoli F et al (2013) Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 14(8):16365–16385.  https://doi.org/10.3390/ijms140816365 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barras D (2015) BRAF mutation in colorectal cancer: an update. Biomark Cancer 7(Suppl 1):9–12.  https://doi.org/10.4137/bic.s25248 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Morkel M, Riemer P, Bläker H et al (2015) Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget 6(25):20785–20800CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356.  https://doi.org/10.1038/nm.3967 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Young L, Sung J, Stacey G et al (2010) Detection of mycoplasma in cell cultures. Nat Protoc 5(5):929–934CrossRefPubMedGoogle Scholar
  11. 11.
    Tögel L, Nightingale R, Chueh AC et al (2016) Dual targeting of bromodomain and extraterminal domain proteins, and WNT or MAPK signaling, inhibits c-MYC expression and proliferation of colorectal cancer cells. Mol Cancer Ther 15(6):1217CrossRefPubMedGoogle Scholar
  12. 12.
    Shin J, Carr A, Corner GA et al (2014) The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a kruppel-like factor 5 (KLF5)-dependent manner. J Biol Chem 289(36):25306–25316.  https://doi.org/10.1074/jbc.M114.557546 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wilson AJ, Chueh AC, Tögel L et al (2010) A coordinated Sp1/Sp3-mediated transcriptional response involving immediate-early gene induction is linked to HDAC inhibitor-induced apoptosis in colon cancer cells. Cancer Res 70(2):609–620.  https://doi.org/10.1158/0008-5472.CAN-09-2327 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Butler JM (2007) Short tandem repeat typing technologies used in human identity testing. BioTechniques 43(4):ii–ivCrossRefPubMedGoogle Scholar
  15. 15.
    Nikfarjam L, Farzaneh P (2012) Prevention and detection of mycoplasma contamination in cell culture. Cell J 13(4):203–212PubMedGoogle Scholar
  16. 16.
    Bacher JW, Flanagan LA, Smalley RL et al (2004) Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis Markers 20(4–5):237–250CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33(21):6823–6836.  https://doi.org/10.1093/nar/gki987 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gu H, Bock C, Mikkelsen TS et al (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7(2):133–136.  https://doi.org/10.1038/nmeth.1414 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6):e41.  https://doi.org/10.1093/nar/gkm013 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jasmine F, Rahaman R, Roy S et al (2012) Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue. BMC Res Notes 5:117.  https://doi.org/10.1186/1756-0500-5-117 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793.  https://doi.org/10.1038/ng1834 CrossRefPubMedGoogle Scholar
  23. 23.
    Nosho K, Irahara N, Shima K et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11):e3698.  https://doi.org/10.1371/journal.pone.0003698 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ogino S, Kawasaki T, Brahmandam M et al (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8(2):209–217.  https://doi.org/10.2353/jmoldx.2006.050135 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20(4):1043–1048.  https://doi.org/10.1200/JCO.2002.20.4.1043 CrossRefPubMedGoogle Scholar
  26. 26.
    Shi C, Washington K (2012) Molecular testing in colorectal cancer: diagnosis of lynch syndrome and personalized cancer medicine. Am J Clin Pathol 137(6):847–859.  https://doi.org/10.1309/AJCPI83DINULUJNI CrossRefPubMedGoogle Scholar
  27. 27.
    Berg KD, Glaser CL, Thompson RE et al (2000) Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn 2(1):20–28CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murphy KM, Zhang S, Geiger T et al (2006) Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn 8(3):305–311.  https://doi.org/10.2353/jmoldx.2006.050092 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sah S, Chen L, Houghton J et al (2013) Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies. Genome Med 5(8):77.  https://doi.org/10.1186/gm481 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Simbolo M, Gottardi M, Corbo V et al (2013) DNA qualification workflow for next generation sequencing of histopathological samples. PLoS One 8(6):e62692.  https://doi.org/10.1371/journal.pone.0062692 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ogino S, Kawasaki T, Kirkner GJ et al (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9(3):305–314.  https://doi.org/10.2353/jmoldx.2007.060170 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jennifer K. Mooi
    • 1
  • Ian Y. Luk
    • 1
  • John M. Mariadason
    • 1
  1. 1.Olivia Newton-John Cancer Research InstituteMelbourneAustralia

Personalised recommendations