Analysis of Bacterial Pilus Assembly by Shearing and Immunofluorescence Microscopy

  • Areli Luna-Rico
  • Jenny-Lee Thomassin
  • Olivera Francetic
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)

Abstract

Bacterial surface appendages of the type 4 pilus superfamily play diverse roles in adherence, aggregation, motility, signaling, and macromolecular transport. Here we describe two analytical approaches to study assembly of type 4 pili and of pseudopili produced by type 2 protein secretion systems: the shearing assay and immunofluorescence microscopy. These complementary antibody-based methods allow for semiquantitative analysis of fiber assembly. The shearing assay can be scaled up to yield crude extracts of pili that can be further analyzed by electron and atomic force microscopy or by mass spectrometry.

Key words

Type 4 pili Type 2 secretion pseudopili Pilus assembly Shearing assay Immuno-detection Tricine SDS-PAGE Immunofluorescence microscopy 

Notes

Acknowledgments

The work in our group is funded by the Institut Pasteur, CNRS and ANR grant 14-CE09-0004. A.L.R. was funded by the Pasteur-Paris University PhD program. J.L.T. was funded by the ANR grant 14-CE09-0004 and by the NSERC postdoctoral fellowship. We thank Nadia Izadi-Pruneyre, Daniel Ladant and members of the NMR of Biomolecules and Biochemistry of Macromolecular Interactions Units for interest and support. We thank Servier Medical Art (http://www.servier.com/ Powerpoint-image-bank) as a source of drawings used in Fig. 1.

References

  1. 1.
    Berry JL, Pelicic V (2015) Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39:134–154. https://doi.org/10.1093/femsre/fuu001 CrossRefPubMedGoogle Scholar
  2. 2.
    Strom MS, Lory S (1993) Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596. https://doi.org/10.1146/annurev.micro.47.1.565 CrossRefPubMedGoogle Scholar
  3. 3.
    Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314. https://doi.org/10.1146/annurev.micro.56.012302.160938 CrossRefPubMedGoogle Scholar
  4. 4.
    Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. https://doi.org/10.1038/nature03661 CrossRefPubMedGoogle Scholar
  5. 5.
    Hobbs M, Mattick JS (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243. https://doi.org/10.1111/j.1365-2958.1993.tb01949.x CrossRefPubMedGoogle Scholar
  6. 6.
    Peabody CR, Chung YJ, Yen MR et al (2003) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:3051–3072. https://doi.org/10.1099/mic.0.26364-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Thomassin J-L, Santos Moreno J, Guilvout I et al (2017) The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 105(2):211–226. https://doi.org/10.1111/mmi.13704 CrossRefPubMedGoogle Scholar
  8. 8.
    Korotkov KV, Sandkvist M, Hol WGJ (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351. https://doi.org/10.1038/nrmicro2762 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    d’Enfert C, Ryter A, Pugsley AP (1987) Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6:3531–3538PubMedPubMedCentralGoogle Scholar
  10. 10.
    Sauvonnet N, Vignon G, Pugsley AP, Gounon P (2000) Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19:2221–2228. https://doi.org/10.1093/emboj/19.10.2221 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sauvonnet N, Gounon P, Pugsley AP (2000) PpdD type IV pilin of Escherichia coli K-12 can be assembled into pili in Pseudomonas aeruginosa. J Bacteriol 182:848–854. https://doi.org/10.1128/JB.182.3.848-854.2000.Updated CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vignon G, Köhler R, Larquet E et al (2003) Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428. https://doi.org/10.1128/JB.185.11.3416-3428.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cisneros DA, Bond PJ, Pugsley AP et al (2011) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31:1041–1053. https://doi.org/10.1038/emboj.2011.454 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santos-Moreno J, East A, Guilvout I et al (2017) Polar N-terminal residues conserved in type 2 secretion pseudopilins determine subunit targeting and membrane extraction steps during fibre assembly. J Mol Biol 429(11):1746–1765. https://doi.org/10.1016/j.jmb.2017.04.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Schägger H (2006) Tricine–SDS-PAGE. Nat Protoc 1:16–22. https://doi.org/10.1038/nprot.2006.4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Areli Luna-Rico
    • 1
  • Jenny-Lee Thomassin
    • 1
  • Olivera Francetic
    • 1
  1. 1.Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528Institut PasteurParis Cedex 15France

Personalised recommendations