AGGRESCAN3D: Toward the Prediction of the Aggregation Propensities of Protein Structures

  • Jordi Pujols
  • Samuel Peña-Díaz
  • Salvador Ventura
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)

Abstract

Protein aggregation is responsible for the onset and spread of many human diseases, ranging from neurodegenerative disorders to cancer and diabetes. Moreover, it is one of the major bottlenecks for the production of protein-based therapeutics such as antibodies or enzymes. AGGRESCAN3D (A3D) is a web server aimed to identify and evaluate structural aggregation prone regions, overcoming the limitations of sequence-based algorithms in the prediction of the aggregation propensity of globular proteins. A3D allows the redesign of protein solubility by predicting in silico the impact of mutations and protein conformational fluctuations on the aggregation of native polypeptides.

Key words

AGGRESCAN3D Bioinformatics 3D structure Protein aggregation Protein misfolding Protein production Protein solubility 

References

  1. 1.
    Chiti F, Dobson C (2017) Amyloid formation, protein homeostasis, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:1–42CrossRefGoogle Scholar
  2. 2.
    Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L (2004) A comparative study of the relationship between protein structure and b-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342:345–353CrossRefPubMedGoogle Scholar
  3. 3.
    Ventura S, Zurdo J, Narayanan S, Aviles FX et al (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 101:7258–7263CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D (2004) An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci U S A 101:10584–10589CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cheon M, Chang I, Mohanty S, Luheshi LM, Dobson CM, Vendruscolo M, Favrin G (2007) Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comput Biol 3:1727–1738CrossRefPubMedGoogle Scholar
  6. 6.
    Monsellier E, Ramazzotti M, Taddei N, Chiti F (2008) Aggregation propensity of the human proteome. PLoS Comput Biol 4(10):e1000199CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pechmann S, Levy ED, Tartaglia GG, Vendruscolo M (2009) Physicochemical principles that regulate the competition between functional and dysfunctional association of proteins. Proc Natl Acad Sci U S A 106:10159–10164CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332CrossRefPubMedGoogle Scholar
  9. 9.
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355CrossRefPubMedGoogle Scholar
  10. 10.
    Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:4354–4354CrossRefGoogle Scholar
  11. 11.
    Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mckinnon C, Tabrizi SJ (2014) The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal 5:1–61Google Scholar
  13. 13.
    Wang G, Fersht AR (2017) Multisite aggregation of p53 and implications for drug rescue. Proc Natl Acad Sci U S A 114(13):2634–2643CrossRefGoogle Scholar
  14. 14.
    Mathias Jucker LCW (2013) Self-propagation of pathogenic aggregates in neurodegenerative diseases. Nature 501:45–51CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory agency approved drug. J Mol Biol 421:185–203CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gallardo R, Ramakers M, De Smet F et al (2016) De novo design of a biologically active amyloid. Science 354:720–730CrossRefGoogle Scholar
  17. 17.
    Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000CrossRefPubMedGoogle Scholar
  18. 18.
    Hamrang Z, Rattray NJW, Pluen A (2013) Proteins behaving badly: emerging technologies in profiling biopharmaceutical aggregation. Trends Biotechnol 31:448–458CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar S, Singh SK, Wang X, Rup B, Gill D (2011) Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm Res 28:949–961CrossRefPubMedGoogle Scholar
  20. 20.
    Wang W, Singh SK, Li N, Toler MR, King KR, Nema S (2012) Immunogenicity of protein aggregates – concerns and realities. Int J Pharm 431:1–11CrossRefPubMedGoogle Scholar
  21. 21.
    Roberts CJ (2008) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 23:1–7Google Scholar
  22. 22.
    Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318:1900–1903CrossRefPubMedGoogle Scholar
  23. 23.
    Li D, Jones EM, Sawaya MR et al (2014) Structure-based design of functional amyloid materials. J Am Chem Soc 136:18044–18051CrossRefPubMedGoogle Scholar
  24. 24.
    Hauser CAE, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43:5326–5345CrossRefPubMedGoogle Scholar
  25. 25.
    Shimanovich U, Efimov I, TO M et al (2014) Protein microgels from amyloid fibril networks. ACS Nano 9:43–51CrossRefGoogle Scholar
  26. 26.
    Kamada A, Mittal N, Söderberg LD, Ingverud T, Ohm W, Roth SV, Lundell F, Lendel C (2017) Flow-assisted assembly of nanostructured protein microfibers. Proc Natl Acad Sci U S A 114:1232–1237CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee CC, Perchiacca JM, Tessier PM (2013) Toward aggregation-resistant antibodies by design. Trends Biotechnol 31:612–620CrossRefPubMedGoogle Scholar
  28. 28.
    Dudgeon K, Rouet R, Kokmeijer I, Schofield P, Stolp J, Langley D, Stock D, Christ D (2012) General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A 109:10879–10884CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perchiacca JM, Tessier PM (2012) Engineering aggregation-resistant antibodies. Annu Rev Chem Biomol Eng 3:263–286CrossRefPubMedGoogle Scholar
  30. 30.
    Van der Kant R, Karow-Zwick AR, Van Durme J et al (2017) Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol 429:1244–1261CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Belli M, Ramazzotti M, Chiti F (2011) Prediction of amyloid aggregation in vivo. EMBO Rep 12:657–663CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Buck PM, Kumar S, Singh SK (2013) On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 9:e1003291CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43:w306–w313CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinformatics 8:65CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:427–431CrossRefGoogle Scholar
  36. 36.
    Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400CrossRefPubMedGoogle Scholar
  37. 37.
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:382–388CrossRefGoogle Scholar
  38. 38.
    Dutta SR, Gauri SS, Ghosh T, Halder SK, DasMohapatra PK, Mondal KC, Ghosh AK (2017) Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta. Bioorg Med Chem Lett 27:1686–1692CrossRefPubMedGoogle Scholar
  39. 39.
    Polo A, Colonna G, Guariniello S, Ciliberto G, Costantini S (2016) Deducing the functional characteristics of the human selenoprotein SELK from the structural properties of its intrinsically disordered C-terminal domain. Mol Biosyst 12(3):758–772CrossRefPubMedGoogle Scholar
  40. 40.
    Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M (2016) Specific Hsp100 chaperones determine the fate of the first enzyme of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp protease in Arabidopsis. PLoS Genet 12:1–19CrossRefGoogle Scholar
  41. 41.
    Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22CrossRefPubMedGoogle Scholar
  42. 42.
    Canet D, Last AM, Tito P, Sunde M, Spencer A, Archer DB, Redfield C, Robinson CV, Dobson CM (2002) Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat Struct Biol 9:308–315CrossRefPubMedGoogle Scholar
  43. 43.
    Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13:202–208CrossRefPubMedGoogle Scholar
  44. 44.
    Davies HA, Rigden DJ, Phelan MM, Madine J (2017) Probing medin monomer structure and its amyloid nucleation using 13C-direct detection NMR in combination with structural bioinformatics. Sci Rep 7:45224CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Soler MA, de Marco A, Fortuna S (2016) Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Sci Rep 6:34869CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pulido D, Arranz-Trullén J, Prats-Ejarque G, Velázquez D, Torrent M, Moussaoui M, Boix E (2016) Insights into the antimicrobial mechanism of action of human RNase6: structural determinants for bacterial cell agglutination and membrane permeation. Int J Mol Sci 17:552CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Xia X, Kumru OS, Blaber SI, Middaugh CR, Li L, David M, Sutherland MA, Tenorio CA, Blaber M (2017) Factor-1 for ‘second generation’ therapeutic application. J Pharm Sci 105:1444–1453CrossRefGoogle Scholar
  48. 48.
    Tartaglia GG, Pawar AP, Campioni S, Dobson CM, Chiti F, Vendruscolo M (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380:425–436CrossRefPubMedGoogle Scholar
  49. 49.
    Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:301–307CrossRefGoogle Scholar
  50. 50.
    Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2009) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332CrossRefPubMedGoogle Scholar
  51. 51.
    Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jordi Pujols
    • 1
    • 2
  • Samuel Peña-Díaz
    • 1
    • 2
  • Salvador Ventura
    • 1
    • 2
  1. 1.Institut de Biotecnologia i BiomedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations