Somatic DNA Copy-Number Alterations Detection for Esophageal Adenocarcinoma Using Digital Polymerase Chain Reaction

  • Katherine T.  W. Lee
  • Vinod Gopalan
  • Alfred K. Lam
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1756)

Abstract

Somatic copy-number alterations are commonly found in cancer and play key roles in activating oncogenes and deactivating tumor suppressor genes. Digital polymerase chain reaction is an effective way to detect the changes in copy number. In esophageal adenocarcinoma, detection of somatic copy-number alterations could predict the prognosis of patients as well as the response to therapy. This chapter will review the methods involved in digital polymerase chain reaction for the research or potential clinical applications in esophageal adenocarcinoma.

Key words

Digital PCR Esophageal adenocarcinoma DNA Copy-number alterations Gene therapy 

References

  1. 1.
    Nones K, Waddell N, Wayte N, Patch AM, Bailey P, Newell F, Holmes O, Fink JL, Quinn MC, Tang YH, Lampe G, Quek K, Loffler KA, Manning S, Idrisoglu S, Miller D, Xu Q, Waddell N, Wilson PJ, Bruxner TJ, Christ AN, Harliwong I, Nourse C, Nourbakhsh E, Anderson M, Kazakoff S, Leonard C, Wood S, Simpson PT, Reid LE, Krause L, Hussey DJ, Watson DI, Lord RV, Nancarrow D, Phillips WA, Gotley D, Smithers BM, Whiteman DC, Hayward NK, Campbell PJ, Pearson JV, Grimmond SM, Barbour AP (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5:5224.  https://doi.org/10.1038/ncomms6224 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140.  https://doi.org/10.1038/ng.2760 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905.  https://doi.org/10.1038/nature08822 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7:226.  https://doi.org/10.1186/1471-2407-7-226 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cancer Genome Atlas Research N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525.  https://doi.org/10.1038/nature11404 CrossRefGoogle Scholar
  6. 6.
    Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Foekens JA, Reis-Filho JS, van 't Veer L, Richardson AL, Borresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010.  https://doi.org/10.1038/nature08645 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, Shah K, Sato M, Thomas RK, Barletta JA, Borecki IB, Broderick S, Chang AC, Chiang DY, Chirieac LR, Cho J, Fujii Y, Gazdar AF, Giordano T, Greulich H, Hanna M, Johnson BE, Kris MG, Lash A, Lin L, Lindeman N, Mardis ER, McPherson JD, Minna JD, Morgan MB, Nadel M, Orringer MB, Osborne JR, Ozenberger B, Ramos AH, Robinson J, Roth JA, Rusch V, Sasaki H, Shepherd F, Sougnez C, Spitz MR, Tsao MS, Twomey D, Verhaak RG, Weinstock GM, Wheeler DA, Winckler W, Yoshizawa A, Yu S, Zakowski MF, Zhang Q, Beer DG, Wistuba II, Watson MA, Garraway LA, Ladanyi M, Travis WD, Pao W, Rubin MA, Gabriel SB, Gibbs RA, Varmus HE, Wilson RK, Lander ES, Meyerson M (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898.  https://doi.org/10.1038/nature06358 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xue W, Kitzing T, Roessler S, Zuber J, Krasnitz A, Schultz N, Revill K, Weissmueller S, Rappaport AR, Simon J, Zhang J, Luo W, Hicks J, Zender L, Wang XW, Powers S, Wigler M, Lowe SW (2012) A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc Natl Acad Sci U S A 109:8212–8217.  https://doi.org/10.1073/pnas.1206062109 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Catenacci DV, Ang A, Liao WL, Shen J, O’Day E, Loberg RD, Cecchi F, Hembrough T, Ruzzo A, Graziano F (2016) MET tyrosine kinase receptor expression and amplification as prognostic biomarkers of survival in gastroesophageal adenocarcinoma. Cancer 123:1061–1070.  https://doi.org/10.1002/cncr.30437 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim SY, Ahn T, Bang H, Ham JS, Kim J, Kim ST, Jang J, Shim M, Kang SY, Park SH, Min BH, Lee H, Kang WK, Kim KM, Park W, Lee J (2017) Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget 8:15014–15022.  https://doi.org/10.18632/oncotarget.14788 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wiech T, Nikolopoulos E, Weis R, Langer R, Bartholome K, Timmer J, Walch AK, Hofler H, Werner M (2009) Genome-wide analysis of genetic alterations in Barrett’s adenocarcinoma using single nucleotide polymorphism arrays. Lab Investig 89:385–397.  https://doi.org/10.1038/labinvest.2008.67 CrossRefPubMedGoogle Scholar
  12. 12.
    Miller CT, Moy JR, Lin L, Schipper M, Normolle D, Brenner DE, Iannettoni MD, Orringer MB, Beer DG (2003) Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia. Clin Cancer Res 9:4819–4825PubMedGoogle Scholar
  13. 13.
    Albrecht B, Hausmann M, Zitzelsberger H, Stein H, Siewert JR, Hopt U, Langer R, Hofler H, Werner M, Walch A (2004) Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett’s adenocarcinoma. J Pathol 203:780–788.  https://doi.org/10.1002/path.1576 CrossRefPubMedGoogle Scholar
  14. 14.
    Pasello G, Agata S, Bonaldi L, Corradin A, Montagna M, Zamarchi R, Parenti A, Cagol M, Zaninotto G, Ruol A, Ancona E, Amadori A, Saggioro D (2009) DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod Pathol 22:58–65.  https://doi.org/10.1038/modpathol.2008.150 CrossRefPubMedGoogle Scholar
  15. 15.
    Nancarrow DJ, Handoko HY, Smithers BM, Gotley DC, Drew PA, Watson DI, Clouston AD, Hayward NK, Whiteman DC (2008) Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res 68:4163–4172.  https://doi.org/10.1158/0008-5472.can-07-6710 CrossRefPubMedGoogle Scholar
  16. 16.
    Choy B, Bandla S, Xia Y, Tan D, Pennathur A, Luketich JD, Godfrey TE, Peters JH, Sun J, Zhou Z (2012) Clinicopathologic characteristics of high expression of Bmi-1 in esophageal adenocarcinoma and squamous cell carcinoma. BMC Gastroenterol 12:146.  https://doi.org/10.1186/1471-230x-12-146 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davison JM, Yee M, Krill-Burger JM, Lyons-Weiler MA, Kelly LA, Sciulli CM, Nason KS, Luketich JD, Michalopoulos GK, LaFramboise WA (2014) The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma. PLoS One 9:e79079.  https://doi.org/10.1371/journal.pone.0079079 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin L, Prescott MS, Zhu Z, Singh P, Chun SY, Kuick RD, Hanash SM, Orringer MB, Glover TW, Beer DG (2000) Identification and characterization of a 19q12 amplicon in esophageal adenocarcinomas reveals cyclin E as the best candidate gene for this amplicon. Cancer Res 60:7021–7027PubMedGoogle Scholar
  19. 19.
    Frankel A, Armour N, Nancarrow D, Krause L, Hayward N, Lampe G, Smithers BM, Barbour A (2014) Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis. Genes Chromosomes Cancer 53:324–338.  https://doi.org/10.1002/gcc.22143 CrossRefPubMedGoogle Scholar
  20. 20.
    Rygiel AM, Milano F, Ten Kate FJ, Schaap A, Wang KK, Peppelenbosch MP, Bergman JJ, Krishnadath KK (2008) Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Cancer Epidemiol Biomark Prev 17:1380–1385.  https://doi.org/10.1158/1055-9965.epi-07-2734 CrossRefGoogle Scholar
  21. 21.
    Miller CT, Aggarwal S, Lin TK, Dagenais SL, Contreras JI, Orringer MB, Glover TW, Beer DG, Lin L (2003) Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res 63:4136–4143PubMedGoogle Scholar
  22. 22.
    Hasina R, Mollberg N, Kawada I, Mutreja K, Kanade G, Yala S, Surati M, Liu R, Li X, Zhou Y, Ferguson BD, Nallasura V, Cohen KS, Hyjek E, Mueller J, Kanteti R, El Hashani E, Kane D, Shimada Y, Lingen MW, Husain AN, Posner MC, Waxman I, Villaflor VM, Ferguson MK, Varticovski L, Vokes EE, Gill P, Salgia R (2013) Critical role for the receptor tyrosine kinase EPHB4 in esophageal cancers. Cancer Res 73:184–194.  https://doi.org/10.1158/0008-5472.can-12-0915 CrossRefPubMedGoogle Scholar
  23. 23.
    Hjortland GO, Meza-Zepeda LA, Beiske K, Ree AH, Tveito S, Hoifodt H, Bohler PJ, Hole KH, Myklebost O, Fodstad O, Smeland S, Hovig E (2011) Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma. BMC Cancer 11:455.  https://doi.org/10.1186/1471-2407-11-455 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tokunaga R, Imamura Y, Nakamura K, Ishimoto T, Nakagawa S, Miyake K, Nakaji Y, Tsuda Y, Iwatsuki M, Baba Y, Sakamoto Y, Miyamoto Y, Saeki H, Yoshida N, Oki E, Watanabe M, Oda Y, Bass AJ, Maehara Y, Baba H (2016) Fibroblast growth factor receptor 2 expression, but not its genetic amplification, is associated with tumor growth and worse survival in esophagogastric junction adenocarcinoma. Oncotarget 7:19748–19761.  https://doi.org/10.18632/oncotarget.7782 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Walch A, Specht K, Braselmann H, Stein H, Siewert JR, Hopt U, Hofler H, Werner M (2004) Coamplification and coexpression of GRB7 and ERBB2 is found in high grade intraepithelial neoplasia and in invasive Barrett's carcinoma. Int J Cancer 112:747–753.  https://doi.org/10.1002/ijc.20411 CrossRefPubMedGoogle Scholar
  26. 26.
    Kumarasinghe MP, de Boer WB, Khor TS, Ooi EM, Jene N, Jayasinghe S, Fox SB (2014) HER2 status in gastric/gastro-esophageal junctional cancers: should determination of gene amplification by SISH use HER2 copy number or HER2: CEP17 ratio? Pathology 46:184–187.  https://doi.org/10.1097/pat.0000000000000075 CrossRefPubMedGoogle Scholar
  27. 27.
    Lange T, Nentwich MF, Luth M, Yekebas E, Schumacher U (2011) Trastuzumab has anti-metastatic and anti-angiogenic activity in a spontaneous metastasis xenograft model of esophageal adenocarcinoma. Cancer Lett 308(1):54–61.  https://doi.org/10.1016/j.canlet.2011.04.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Safran H, Dipetrillo T, Akerman P, Ng T, Evans D, Steinhoff M, Benton D, Purviance J, Goldstein L, Tantravahi U, Kennedy T (2007) Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys 67:405–409.  https://doi.org/10.1016/j.ijrobp.2006.08.076 CrossRefPubMedGoogle Scholar
  29. 29.
    Michalk M, Meinrath J, Kunstlinger H, Koitzsch U, Drebber U, Merkelbach-Bruse S, Bollschweiler E, Kloth M, Hartmann W, Holscher A, Quaas A, Grimminger PP, Odenthal M (2016) MDM2 gene amplification in esophageal carcinoma. Oncol Rep 35:2223–2227.  https://doi.org/10.3892/or.2016.4578 CrossRefPubMedGoogle Scholar
  30. 30.
    Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S, Ali-Fehmi R, Beer DG, Weaver DW, Shmookler Reis RJ, Goyal RK, Huang Q, Munshi NC, Shammas MA (2011) Genomic evolution in Barrett’s adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 30:3585–3598.  https://doi.org/10.1038/onc.2011.83 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lockwood WW, Thu KL, Lin L, Pikor LA, Chari R, Lam WL, Beer DG (2012) Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma. Clin Cancer Res 18:1936–1946.  https://doi.org/10.1158/1078-0432.ccr-11-1431 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Akagi T, Ito T, Kato M, Jin Z, Cheng Y, Kan T, Yamamoto G, Olaru A, Kawamata N, Boult J, Soukiasian HJ, Miller CW, Ogawa S, Meltzer SJ, Koeffler HP (2009) Chromosomal abnormalities and novel disease-related regions in progression from Barrett’s esophagus to esophageal adenocarcinoma. Int J Cancer 125:2349–2359.  https://doi.org/10.1002/ijc.24620 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT, Zhou Z (2017) Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol 10:29–37.  https://doi.org/10.2147/ceg.s117842 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Leicht DT, Kausar T, Wang Z, Ferrer-Torres D, Wang TD, Thomas DG, Lin J, Chang AC, Lin L, Beer DG (2014) TGM2: a cell surface marker in esophageal adenocarcinomas. J Thorac Oncol 9:872–881.  https://doi.org/10.1097/jto.0000000000000229 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhou Z, Xia Y, Bandla S, Zakharov V, Wu S, Peters J, Godfrey TE, Sun J (2014) Vitamin D receptor is highly expressed in precancerous lesions and esophageal adenocarcinoma with significant sex difference. Human Pathol 45:1744–1751.  https://doi.org/10.1016/j.humpath.2014.02.029 CrossRefGoogle Scholar
  36. 36.
    Boonstra JJ, van Marion R, Douben HJ, Lanchbury JS, Timms KM, Abkevich V, Tilanus HW, de Klein A, Dinjens WN (2012) Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts. Genes Chromosomes Cancer 51:272–282.  https://doi.org/10.1002/gcc.20952 CrossRefPubMedGoogle Scholar
  37. 37.
    Soutto M, Peng D, Razvi M, Ruemmele P, Hartmann A, Roessner A, Schneider-Stock R, El-Rifai W (2010) Epigenetic and genetic silencing of CHFR in esophageal adenocarcinomas. Cancer 116:4033–4042.  https://doi.org/10.1002/cncr.25151 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bandla S, Peters JH, Ruff D, Chen SM, Li CY, Song K, Thoms K, Litle VR, Watson T, Chapurin N, Lada M, Pennathur A, Luketich JD, Peterson D, Dulak A, Lin L, Bass A, Beer DG, Godfrey TE, Zhou Z (2014) Comparison of cancer-associated genetic abnormalities in columnar-lined esophagus tissues with and without goblet cells. Ann Surg 260:72–80.  https://doi.org/10.1097/SLA.0000000000000424 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang K, Wu X, Wang J, Lopez J, Zhou W, Yang L, Wang SE, Raz DJ, Kim JY (2016) Circulating miRNA profile in esophageal adenocarcinoma. Am J Cancer Res 6:2713–2721PubMedPubMedCentralGoogle Scholar
  40. 40.
    Goh XY, Rees JR, Paterson AL, Chin SF, Marioni JC, Save V, O’Donovan M, Eijk PP, Alderson D, Ylstra B, Caldas C, Fitzgerald RC (2011) Integrative analysis of array-comparative genomic hybridisation and matched gene expression profiling data reveals novel genes with prognostic significance in esophageal adenocarcinoma. Gut 60:1317–1326.  https://doi.org/10.1136/gut.2010.234179 CrossRefPubMedGoogle Scholar
  41. 41.
    Silvers AL, Lin L, Bass AJ, Chen G, Wang Z, Thomas DG, Lin J, Giordano TJ, Orringer MB, Beer DG, Chang AC (2010) Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity. Clin Cancer Res 16:2009–2021.  https://doi.org/10.1158/1078-0432.ccr-09-2801 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Obulkasim A, Ylstra B, van Essen HF, Benner C, Stenning S, Langley R, Allum W, Cunningham D, Inam I, Hewitt LC, West NP, Meijer GA, van de Wiel MA, Grabsch HI (2016) Reduced genomic tumor heterogeneity after neoadjuvant chemotherapy is related to favorable outcome in patients with esophageal adenocarcinoma. Oncotarget 7:44084–44095.  https://doi.org/10.18632/oncotarget.9857 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Aichler M, Motschmann M, Jutting U, Luber B, Becker K, Ott K, Lordick F, Langer R, Feith M, Siewert JR, Walch A (2014) Epidermal growth factor receptor (EGFR) is an independent adverse prognostic factor in esophageal adenocarcinoma patients treated with cisplatin-based neoadjuvant chemotherapy. Oncotarget 5:6620–6632.  https://doi.org/10.18632/oncotarget.2268 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu E, Sun W, Gu J, Chow WH, Ajani JA, Wu X (2013) Association of mitochondrial DNA copy number in peripheral blood leukocytes with risk of esophageal adenocarcinoma. Carcinogenesis 34:2521–2524.  https://doi.org/10.1093/carcin/bgt230 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee S, Han MJ, Lee KS, Back SC, Hwang D, Kim HY, Shin JH, Suh SP, Ryang DW, Kim HR, Shin MG (2012) Frequent occurrence of mitochondrial DNA mutations in Barrett’s metaplasia without the presence of dysplasia. PLoS One 7:e37571.  https://doi.org/10.1371/journal.pone.0037571 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Geppert CI, Rummele P, Sarbia M, Langer R, Feith M, Morrison L, Pestova E, Schneider-Stock R, Hartmann A, Rau TT (2014) Multi-colour FISH in esophageal adenocarcinoma-predictors of prognosis independent of stage and grade. Br J Cancer 110:2985–2995.  https://doi.org/10.1038/bjc.2014.238 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ismail A, Bandla S, Reveiller M, Toia L, Zhou Z, Gooding WE, Kalatskaya I, Stein L, D’Souza M, Litle VR, Peters JH, Pennathur A, Luketich JD, Godfrey TE (2011) Early G(1) cyclin-dependent kinases as prognostic markers and potential therapeutic targets in esophageal adenocarcinoma. Clin Cancer Res 17:4513–4522.  https://doi.org/10.1158/1078-0432.ccr-11-0244 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK, To GATI (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-esophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697.  https://doi.org/10.1016/S0140-6736(10)61121-X CrossRefPubMedGoogle Scholar
  49. 49.
    Almhanna K, Meredith KL, Hoffe SE, Shridhar R, Coppola D (2013) Targeting the human epidermal growth factor receptor 2 in esophageal cancer. Cancer Control 20:111–116CrossRefGoogle Scholar
  50. 50.
    Li X, Galipeau PC, Paulson TG, Sanchez CA, Arnaudo J, Liu K, Sather CL, Kostadinov RL, Odze RD, Kuhner MK, Maley CC, Self SG, Vaughan TL, Blount PL, Reid BJ (2014) Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila) 7:114–127.  https://doi.org/10.1158/1940-6207.CAPR-13-0289 CrossRefGoogle Scholar
  51. 51.
    Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449PubMedGoogle Scholar
  52. 52.
    Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241CrossRefGoogle Scholar
  53. 53.
    Fan HC, Quake SR (2007) Detection of aneuploidy with digital polymerase chain reaction. Anal Chem 79:7576–7579.  https://doi.org/10.1021/ac0709394 CrossRefPubMedGoogle Scholar
  54. 54.
    Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544CrossRefGoogle Scholar
  55. 55.
    McDermott GP, Do D, Litterst CM, Maar D, Hindson CM, Steenblock ER, Legler TC, Jouvenot Y, Marrs SH, Bemis A, Shah P, Wong J, Wang S, Sally D, Javier L, Dinio T, Han C, Brackbill TP, Hodges SP, Ling Y, Klitgord N, Carman GJ, Berman JR, Koehler RT, Hiddessen AL, Walse P, Bousse L, Tzonev S, Hefner E, Hindson BJ, Cauly TH 3rd, Hamby K, Patel VP, Regan JF, Wyatt PW, Karlin-Neumann GA, Stumbo DP, Lowe AJ (2013) Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal Chem 85:11619–11627.  https://doi.org/10.1021/ac403061n CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Katherine T.  W. Lee
    • 1
  • Vinod Gopalan
    • 1
  • Alfred K. Lam
    • 1
  1. 1.Cancer Molecular Pathology of School of MedicineGriffith UniversityGold CoastAustralia

Personalised recommendations