An Overview of Genome-Wide Association Studies

  • Michelle Chang
  • Lin He
  • Lei Cai
Part of the Methods in Molecular Biology book series (MIMB, volume 1754)


Genome-wide association study (GWAS) is a powerful study design to identify genetic variants of a trait and, in particular, detect the association between common single-nucleotide polymorphisms (SNPs) and common human diseases such as heart disease, inflammatory bowel disease, type 2 diabetes, and psychiatric disorders. The standard strategy of population-based case-control studies for GWAS is illustrated in this chapter. We provide an overview of the concepts underlying GWAS, as well as provide guidelines for statistical methods performed in GWAS.

Key words

Genome-wide association studies SNPs Linkage disequilibrium Case-control Two-stage analysis Genotyping Common disease common variant hypothesis 


  1. 1.
    Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31(7):776–788. Scholar
  2. 2.
    Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24. Scholar
  3. 3.
    Haldar T, Ghosh S (2011) Power comparison between population-based case-control studies and family-based transmission-disequilibrium tests: an empirical study. Indian J Hum Genet 17(Suppl 1):S27–S31. Scholar
  4. 4.
    Satagopan JM (2004) Two-stage designs for gene-disease association studies with sample size constraints. Biometrics 60(3):589–597CrossRefGoogle Scholar
  5. 5.
    Kronenberg F (2008) Genome-wide association studies in aging-related processes such as diabetes mellitus, atherosclerosis and cancer. Exp Gerontol 43(1):39–43. Scholar
  6. 6.
    MacArthur J, Bowler E et al (2017) The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res 45(Database issue):D896–D901CrossRefGoogle Scholar
  7. 7.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. Scholar
  8. 8.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. Scholar
  9. 9.
    Zondervan KT, Cardon LR (2007) Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2(10):2492–2501. Scholar
  10. 10.
    Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ (2008) Genome-wide significance for dense SNP and resequencing data. Genet Epidemiol 32(2):179–185. Scholar
  11. 11.
    Seng KC, Seng CK (2008) The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet 16(5):554–564. Bush WS, Moore JH (2012) Chapter 11: Genome-wide association studies. PLoS Comput Biol 8 (12):e1002822. doi:10.1371/journal.pcbi.1002822CrossRefGoogle Scholar
  12. 12.
    Chanock S, NCI-NHGRI Working Group on Replication in Association Studies et al (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660. Scholar
  13. 13.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. Scholar
  14. 14.
    Spain SL, Barrett JC (2015) Strategies for fine-mapping complex traits. Hum Mol Genet 24(R1):R111–R119. Scholar
  15. 15.
    Distefano JK, Taverna DM (2011) Review technological issues and experimental design of gene association studies. Methods Mol Biol 700:3–16CrossRefGoogle Scholar
  16. 16.
    Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6(2):121–133. Scholar
  17. 17.
    Skol AD, Scott LJ et al (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 5:554–564. Scholar
  18. 18.
    Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, Jarvik G, Jiang L, Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty CA, McDavid AN, Mirel DB, Paschall JE, Pugh EW, Rasmussen LV, Wilke RA, Zuvich RL, Ritchie MD (2011) Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet Chapter 1:Unit1 19. doi:
  19. 19.
    Auer PL, Lettre G (2015) Rare variant association studies: considerations, challenges and opportunities. Genome Med 7(1):16. Scholar
  20. 20.
    Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769CrossRefGoogle Scholar
  21. 21.
    Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10(2):191–201. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michelle Chang
    • 1
  • Lin He
    • 1
  • Lei Cai
    • 1
  1. 1.Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center of Genetics and DevelopmentShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations