Transcriptome Sequencing: RNA-Seq

  • Hong Zhang
  • Lin He
  • Lei Cai
Part of the Methods in Molecular Biology book series (MIMB, volume 1754)


RNA sequencing (RNA-seq) can not only be used to identify the expression of common or rare transcripts but also in the identification of other abnormal events, such as alternative splicing, novel transcripts, and fusion genes. In principle, RNA-seq can be carried out by almost all of the next-generation sequencing (NGS) platforms, but the libraries of different platforms are not exactly the same; each platform has its own kit to meet the special requirements of the instrument design.

Key words

Next-generation sequencing RNA sequencing Messenger RNA Library construction Data analysis 


  1. 1.
    Villegas VE, Zaphiropoulos PG (2015) Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci 16(2):3251–3266. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang H, Weng X, Ye J, He L, Zhou D, Liu Y (2015) Promoter hypermethylation of TERT is associated with hepatocellular carcinoma in the Han Chinese population. Clin Res Hepatol Gastroenterol 39(5):600–609. CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang H, Ye J, Weng X, Liu F, He L, Zhou D, Liu Y (2015) Comparative transcriptome analysis reveals that the extracellular matrix receptor interaction contributes to the venous metastases of hepatocellular carcinoma. Cancer Genet 208(10):482–491. CrossRefPubMedGoogle Scholar
  5. 5.
    Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61.-64, 66, 68, passim. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185. CrossRefPubMedGoogle Scholar
  9. 9.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. CrossRefPubMedGoogle Scholar
  10. 10.
    Ogata H, Goto S, Fujibuchi W, Kanehisa M (1998) Computation with the KEGG pathway database. Biosystems 47(1–2):119–128CrossRefGoogle Scholar
  11. 11.
    Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7(12):1009–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim D, Salzberg SL (2011) TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong Zhang
    • 1
  • Lin He
    • 1
  • Lei Cai
    • 1
  1. 1.Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and DevelopmentShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations