Microarray-Based MicroRNA Expression Data Analysis with Bioconductor

  • Emilio Mastriani
  • Rihong Zhai
  • Songling Zhu
Part of the Methods in Molecular Biology book series (MIMB, volume 1751)


MicroRNAs (miRNAs) are small, noncoding RNAs that are able to regulate the expression of targeted mRNAs. Thousands of miRNAs have been identified; however, only a few of them have been functionally annotated. Microarray-based expression analysis represents a cost-effective way to identify candidate miRNAs that correlate with specific biological pathways, and to detect disease-associated molecular signatures. Generally, microarray-based miRNA data analysis contains four major steps: (1) quality control and normalization, (2) differential expression analysis, (3) target gene prediction, and (4) functional annotation. For each step, a large couple of software tools or packages have been developed. In this chapter, we present a standard analysis pipeline for miRNA microarray data, assembled by packages mainly developed with R and hosted in Bioconductor project.

Key words

MicroRNA (miRNA) Bioconcductor R Package Gene expression analysis Microarray data analysis 


  1. 1.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. CrossRefPubMedGoogle Scholar
  2. 2.
    McCall MN, Kim MS, Adil M, Patil AH, Lu Y, Mitchell CJ, Leal-Rojas P, Xu J, Kumar M, Dawson VL, Dawson TM, Baras AS, Rosenberg AZ, Arking DE, Burns KH, Pandey A, Halushka MK (2017) Toward the human cellular microRNAome. Genome Res.
  3. 3.
    Otto T, Candido SV, Pilarz MS, Sicinska E, Bronson RT, Bowden M, Lachowicz IA, Mulry K, Fassl A, Han RC, Jecrois ES, Sicinski P (2017) Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 114(40):10660–10665. pii 201702914. CrossRefPubMedGoogle Scholar
  4. 4.
    Gao L, Jiang F (2016) MicroRNA (miRNA) profiling. Methods Mol Biol 1381:151–161CrossRefPubMedGoogle Scholar
  5. 5.
    Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115–121. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wickham H, Chang W (2017) devtools: tools to make developing R packages easier. R package version 1.13.3.
  7. 7.
    Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258CrossRefPubMedGoogle Scholar
  8. 8.
    Davis S, Meltzer PS (2017) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23(14):1846–1847CrossRefGoogle Scholar
  9. 9.
    Warnes GR, Bolker B, Bonebakker L, et al. (2016) gplots: various R programming tools for plotting data. R package version 3.0.1.
  10. 10.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8(1):289–317PubMedPubMedCentralGoogle Scholar
  12. 12.
    Pajak M, Simpson TI (2016) miRNAtap: miRNAtap: microRNA targets – aggregated predictions. R package version 1.8.0.Google Scholar
  13. 13.
    Pajak M, Simpson TI (2016) miRNAtap.db: data for miRNAtap. R package version 0.99.10.Google Scholar
  14. 14.
    Allaire JJ, Gandrud C, Russell K, Yetman CJ (2017) networkD3: D3 JavaScript network graphs from R. R package version 0.4.
  15. 15.
    Cava C, Colaprico A, Bertoli G, Graudenzi A, Silva TC, Olsen C, Noushmehr H, Bontempi G, Mauri G, Castiglioni I (2017) SpidermiR: an R/bioconductor package for integrative analysis with miRNA data. Int J Mol Sci 18(2.): pii: E274).
  16. 16.
    Almende BV, Thieurmel B, Robert T (2017) visNetwork: network visualization using ‘vis.js’ library. R package version 2.0.1.
  17. 17.
    Zhang F, Xu Y, Shugart YY, Yue W et al (2015) Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr Bull 41(3):728–735CrossRefPubMedGoogle Scholar
  18. 18.
    Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk--database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–104CrossRefPubMedGoogle Scholar
  20. 20.
    Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(Database issue):D163–D169. CrossRefPubMedGoogle Scholar
  22. 22.
    Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A (2012) miRandola: extracellular circulating microRNAs database. PLoS One 7(10):e47786. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N (2014) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 15(4):648–659. CrossRefPubMedGoogle Scholar
  24. 24.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefPubMedGoogle Scholar
  27. 27.
    Agarwal V, Bell GW, Nam J, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9(11):1069–1076. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q (2014) GeneMANIA: fast gene network construction and function prediction for cytoscape. F1000Res 3(153). eCollection 2014
  30. 30.
    Feng G, Shaw P, Rosen ST, Lin SM, Kibbe WA (2012) Using the bioconductor GeneAnswers package to interpret gene lists. Methods Mol Biol 802:101–112. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Emilio Mastriani
    • 1
    • 2
  • Rihong Zhai
    • 3
  • Songling Zhu
    • 1
    • 2
  1. 1.Systemomics Center, College of PharmacyHarbin Medical UniversityHarbinChina
  2. 2.Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China)Harbin Medical UniversityHarbinChina
  3. 3.School of Public HealthShenzhen University Health Science CenterShenzhenChina

Personalised recommendations