Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI

  • Qing Zhang
Part of the Methods in Molecular Biology book series (MIMB, volume 1751)


RNA editing is a posttranscriptional modification process that alters the sequence of RNA molecules. RNA editing is related to many human diseases. However, the identification of RNA editing sites typically requires matched genomic sequence or multiple related expression data sets. Here we describe the GIREMI tool (genome-independent identification of RNA editing by mutual information; that is designed to accurately and sensitively predict adenosine-to-inosine editing from a single RNA-Seq data set.

Key words

RNA editing RNA-Seq Posttranscriptional modification 


  1. 1.
    Keegan LP, Gallo A, O’Connell MA (2001) The many roles of an RNA editor. Nat Rev Genet 2:869–878CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Q, Miyakoda M, Yang W et al (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952–4961CrossRefPubMedGoogle Scholar
  3. 3.
    Higuchi M, Maas S, Single FN et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81CrossRefPubMedGoogle Scholar
  4. 4.
    Maas S, Kawahara Y, Tamburro KM, Nishikura K (2006) A-to-I RNA editing and human disease. RNA Biol 3:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N et al (2003) Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 73:693–699CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M et al (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen L (2013) Characterization and comparison of human nuclear and cytosolic editomes. Proc Natl Acad Sci U S A 110:E2741–E2747CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S et al (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–1595CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA et al (2015) Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep 13:267–276CrossRefPubMedGoogle Scholar
  10. 10.
    Han L, Diao L, Yu S, Xu X, Li J, Zhang R et al (2015) The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28:515–528CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee J-H, Ang JK, Xiao X (2013) Analysis and design of RNA sequencing experiments for identifying RNA editing and other single-nucleotide variants. RNA 19:725–732CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'Connell MA, Li JB (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10:128–132CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang Q, Xiao X (2015) Genome sequence-independent identification of RNA editing sites. Nat Methods 12:347–350CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12(4):656–664CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.10.33Google Scholar
  20. 20.
    Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ahn J, Xiao X (2015) RASER: reads aligner for SNPs and editing sites of RNA. Bioinformatics 31(24):3906–3913PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Qing Zhang
    • 1
  1. 1.Integrative Biology and PhysiologyThe University of California, Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations