Advertisement

Sertoli Cells pp 157-171 | Cite as

Assessing Sertoli Cell Metabolic Activity

  • Ivana Jarak
  • Pedro F. Oliveira
  • Gustavo Rindone
  • Rui A. Carvalho
  • María N. Galardo
  • María F. Riera
  • Silvina B. Meroni
  • Marco G. Alves
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1748)

Abstract

Nuclear magnetic resonance (NMR)-based metabolomics is widely used in the research of metabolic conditions of complex biological systems under various conditions, and its use has been found in the field of male fertility. Here we describe the implementation of total and targeted NMR-based metabolomics in the research on Sertoli cell metabolism. Main principles and techniques of cell medium, cellular extracts, and intact cells are explained, as well as some classical experiments that can give complementary information on the Sertoli cell metabolism.

Keywords

Sertoli Fertility Metabolism NMR Intracellular Extracellular Metabolomics Glucose uptake Lipids 

Notes

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) grant PTDC/BIM-MET/4712/2014 and by the Agencia Nacional de Promoción Cientíca y Tecnológica grants PICT 2014/945 and PICT2015/228 and by the Consejo Nacional de Investigaciones Cientícas y Técnicas (CONICET) grant PIP 2015/127.

References

  1. 1.
    Kovac JR, Pastuszak AW, Lamb DJ (2013) The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 99(4):998–1007. https://doi.org/10.1016/j.fertnstert.2013.01.111 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bieniek JM, Drabovich AP, Lo KC (2016) Seminal biomarkers for the evaluation of male infertility. Asian J Androl 18(3):426–433. https://doi.org/10.4103/1008-682x.175781 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jayaraman V, Ghosh S, Sengupta A, Srivastava S, Sonawat HM, Narayan PK (2014) Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 31(9):1195–1204. https://doi.org/10.1007/s10815-014-0282-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ (2010) A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod 25(4):847–852. https://doi.org/10.1093/humrep/dep475 CrossRefPubMedGoogle Scholar
  5. 5.
    Dias TR, Alves MG, Rato L, Casal S, Silva BM, Oliveira PF (2016) White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem 37:83–93. https://doi.org/10.1016/j.jnutbio.2016.07.018 CrossRefPubMedGoogle Scholar
  6. 6.
    Rocha CS, Martins AD, Rato L, Silva BM, Oliveira PF, Alves MG (2014) Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod 20(11):1067–1076. https://doi.org/10.1093/molehr/gau080 CrossRefPubMedGoogle Scholar
  7. 7.
    Rato L, Alves MG, Socorro S, Carvalho RA, Cavaco JE, Oliveira PF (2012) Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro. Biosci Rep 32(1):61–69. https://doi.org/10.1042/bsr20110030 CrossRefPubMedGoogle Scholar
  8. 8.
    Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565. https://doi.org/10.1038/nrmicro1177 CrossRefPubMedGoogle Scholar
  9. 9.
    Boussouar F, Benahmed M (2004) Lactate and energy metabolism in male germ cells. Trends Endocrinol Metabol 15(7):345–350CrossRefGoogle Scholar
  10. 10.
    Regueira M, Riera MF, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB (2014) Activation of PPAR α and PPAR β/δ regulates Sertoli cell metabolism. Mol Cell Endocrinol 382(1):271–281CrossRefPubMedGoogle Scholar
  11. 11.
    Gorga A, Rindone GM, Regueira M, Pellizzari EH, Camberos MC, Cigorraga SB, Riera MF, Galardo MN, Meroni SB (2017) PPARγ activation regulates lipid droplet formation and lactate production in rat Sertoli cells. Cell Tissue Res 369(3):611–624CrossRefGoogle Scholar
  12. 12.
    Riera M (2002) Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase A mRNA levels by basic fibroblast growth factor in rat Sertoli cells. J Endocrinol 173(2):335–343CrossRefPubMedGoogle Scholar
  13. 13.
    Galardo MN, Gorga A, Merlo JP, Regueira M, Pellizzari EH, Cigorraga SB, Riera MF, Meroni SB (2017) Participation of HIFs in the regulation of Sertoli cell lactate production. Biochimie 132:9–18CrossRefPubMedGoogle Scholar
  14. 14.
    Fan TW-M (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219. https://doi.org/10.1016/0079-6565(95)01017-3 CrossRefGoogle Scholar
  15. 15.
    Barding GA Jr, Salditos R, Larive CK (2012) Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem 404(4):1165–1179. https://doi.org/10.1007/s00216-012-6188-z CrossRefPubMedGoogle Scholar
  16. 16.
    Carrola J et al (2016) Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress. Nanotoxicology 10(8):1105–1117. https://doi.org/10.1080/17435390.2016.1177744 CrossRefPubMedGoogle Scholar
  17. 17.
    Duarte IF et al (2009) Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 81(12):5023–5032. https://doi.org/10.1021/ac900545q CrossRefPubMedGoogle Scholar
  18. 18.
    Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 4:61. https://doi.org/10.1186/1752-0509-4-61 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nowick JS, Khakshoor O, Hashemzadeh M, Brower JO (2003) DSA: a new internal standard for NMR studies in aqueous solution. Org Lett 5(19):3511–3513. https://doi.org/10.1021/ol035347w CrossRefPubMedGoogle Scholar
  20. 20.
    Fan TW-M, Lane AN (2008) Structure-based profiling of metabolites and isotopomers by NMR. Prog Nucl Magn Reson Spectrosc 42:69–117. https://doi.org/10.1016/j.pnmrs.2007.03.002 CrossRefGoogle Scholar
  21. 21.
    Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102(2):344–352CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Ivana Jarak
    • 1
    • 2
  • Pedro F. Oliveira
    • 4
    • 5
    • 6
    • 7
  • Gustavo Rindone
    • 3
  • Rui A. Carvalho
    • 2
  • María N. Galardo
    • 3
  • María F. Riera
    • 3
  • Silvina B. Meroni
    • 3
  • Marco G. Alves
    • 1
  1. 1.Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoPortoPortugal
  2. 2.Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.División de Endocrinología, Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) CONICET – FEIHospital de Niños Ricardo GutiérrezCiudad Autónoma de Buenos AiresArgentina
  4. 4.Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoPortoPortugal
  5. 5.Department of Genetics, Faculty of MedicineUniversity of PortoPortoPortugal
  6. 6.i3S - Instituto de Investigação e Inovação em SaúdeUniversity of PortoPortoPortugal
  7. 7.Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations