Stability Testing Parameters and Issues for Nanotechnology-Based Drug Products

  • Kamla Pathak
  • Satyanarayan Pattnaik
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Stability is one of the critical aspects in ensuring safety and efficacy of drug products, and hence its assessment has gained a paramount importance in the pharmaceutical industry. However, the stability problems and assessment of stability of drug-loaded nanoformulations remain a very challenging aspect in the pharmaceutical field. The stability issues of drug nanoparticles could arise during manufacturing, storage, and shipping. Though, recent advancement in analytical technology has offered ample tools for stability assessment of nanopharmaceuticals, they have their own limitations in terms of efficiency. In this chapter, we summarize various stability testing parameters, techniques used in their evaluation and the issues related to stability testing of nanotechnology based drug products.

Key words

Nanoparticle Nano-formulation Nanotechnology Stability testing Nano-pharmaceuticals 


  1. 1.
    Pathak K, Akhtar N (2016) Nose to brain delivery of nanoformulations for neurotherapeutics in Parkinson’s disease: defining the preclinical, clinical and toxicity issues. Curr Drug Deliv. 13(8):1205–1221 (Epub ahead of print)CrossRefGoogle Scholar
  2. 2.
    Pattnaik S, Swain K, Rao JV, Varun T, Subudhi SK (2015) Aceclofenac nanocrystals for improved dissolution: influence of polymeric stabilizers. RSC Adv 5(112):91960–91965CrossRefGoogle Scholar
  3. 3.
    Pathak K, Raghuvanshi S (2015) Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet 54(4):325–357CrossRefPubMedGoogle Scholar
  4. 4.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347CrossRefPubMedGoogle Scholar
  5. 5.
    Couvreur P, Fattal E, Legrand P et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134CrossRefPubMedGoogle Scholar
  6. 6.
    Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679CrossRefPubMedGoogle Scholar
  7. 7.
    Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21(2):107–116CrossRefGoogle Scholar
  8. 8.
    Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRefPubMedGoogle Scholar
  9. 9.
    Allen TM, Moase EH (1996) Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Deliv Rev 21(2):117–133CrossRefGoogle Scholar
  10. 10.
    Pattnaik S, Swain K, Manaswini P et al (2015) Fabrication of aceclofenac nanocrystals for improved dissolution: process optimization and physicochemical characterization. J Drug Deliv Sci Tech 29:199–209CrossRefGoogle Scholar
  11. 11.
    Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247CrossRefPubMedGoogle Scholar
  12. 12.
    Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16CrossRefPubMedGoogle Scholar
  13. 13.
    Gao L, Zhang D, Chen M (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862CrossRefGoogle Scholar
  14. 14.
    Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570CrossRefPubMedGoogle Scholar
  15. 15.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20CrossRefPubMedGoogle Scholar
  16. 16.
    Muller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177CrossRefPubMedGoogle Scholar
  17. 17.
    Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions a promising drug delivery strategy. J Pharm Pharmacol 56:827–840CrossRefPubMedGoogle Scholar
  18. 18.
    Allen T (1997) Particle measurement, 5th edn. Chapman & Hall, LondonGoogle Scholar
  19. 19.
    Amziane A, Belliard L, Decremps F et al (2011) Ultrafast acoustic resonance spectroscopy of gold nanostructures: towards a generation of tunable transverse waves. Phys Rev B 83:014102CrossRefGoogle Scholar
  20. 20.
    Kourti T (2006) Turbidimetry in particle size analysis. Encyclopedia of Analytical Chemistry. Published online: 15 Sep 2006, doi:
  21. 21.
    Matyus SP, Braun PJ, Wolak-Dinsmore J et al (2015) HDL particle number measured on the Vantera®, the first clinical NMR analyzer. Clin Biochem 48(3):148–155. CrossRefPubMedGoogle Scholar
  22. 22.
    Valentini M, Vaccaro A, Rehor A et al (2004) Diffusion NMR spectroscopy for the characterization of the size and interactions of colloidal matter: the case of vesicles and nanoparticles. J Am Chem Soc 126:2142–2147CrossRefPubMedGoogle Scholar
  23. 23.
    Leo E, Brina B, Forni F et al (2004) In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm 278:133–141CrossRefPubMedGoogle Scholar
  24. 24.
    Johnson KA (2007) Interfacial phenomena and phase behaviour in metered dose inhaler formulations. In: Hickey AJ (ed) Inhalation aerosols: physical and biological basis for therapy, 2nd edn. Informa Healthcare, New York, pp 347–372Google Scholar
  25. 25.
    Kuentz M, Röthlisberger D (2003) Rapid assessment of sedimentation stability in dispersions using near infrared transmission measurements during centrifugation and oscillatory rheology. Eur J Pharm Biopharm 56(3):355–361CrossRefPubMedGoogle Scholar
  26. 26.
    Mishra PR, Shaal LA, Müller RH et al (2009) Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189CrossRefPubMedGoogle Scholar
  27. 27.
    Pattnaik S, Swain K, Mallick S et al (2011) Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm 406:106–110CrossRefPubMedGoogle Scholar
  28. 28.
    Pattnaik P, Swain K, Rao V et al (2015) Polymer co-processing of ibuprofen through compaction for improved oral absorption. RSC Adv 5(91):74720–74725CrossRefGoogle Scholar
  29. 29.
    Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491. CrossRefPubMedGoogle Scholar
  30. 30.
    AC S, Grubbs J, Qian S et al (2012) Probing nanoparticle interactions in cell culture media. Colloids Surf B Biointerfaces 95:96–102. CrossRefGoogle Scholar
  31. 31.
    Shaikh MV, Kala M, Nivsarkar M (2016) Development and optimization of an ex vivo colloidal stability model for nanoformulations. AAPS PharmSciTech 18(4):12881292 CrossRefPubMedGoogle Scholar
  32. 32.
    Lazzari S, Moscatelli D, Codari F et al (2012) Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res 14(6):920CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stockhofe K, Postema JM, Schieferstein H et al (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel) 7(4):392–418CrossRefGoogle Scholar
  34. 34.
    Herth MM, Barz M, Moderegger D et al (2009) Radioactive labeling of defined HPMA-based polymeric structures using (18F) FETos for in vivo imaging by positron emission tomography. Biomacromolecules 10:1697–1703CrossRefPubMedGoogle Scholar
  35. 35.
    Jeng C-C, Cheng S-H, Ho JA, et al (2011) Dynamic probing of nanoparticle stability in vivo: a liposomal model assessed using in situ microdialysis and optical imaging. J Nanomat 2011: Article ID 932719, 8 pagesCrossRefGoogle Scholar
  36. 36.
    Li Y, Budamagunta MS, Luo J et al (2012) Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano 6(11):9485–9495CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Choi KO, Aditya NP, Ko S (2014) Effect of aqueous pH and electrolyte concentration on structure, stability and flow behaviour of non-ionic surfactant based solid lipid nanoparticles. Food Chem 147:239–244CrossRefPubMedGoogle Scholar
  38. 38.
    Schwarz C, Mehnert W, Lucks JS et al (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30(1):83–96CrossRefGoogle Scholar
  39. 39.
    Basaran E, Demirel M, Sirmagül B et al (2010) Cyclosporine-a incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1):37–47CrossRefPubMedGoogle Scholar
  40. 40.
    Konan YN, Gurny R, Allémann E (2002) Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 233(1–2):239–252CrossRefPubMedGoogle Scholar
  41. 41.
    Brigger I, Armand-Lefevre L, Chaminade P et al (2003) The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res 20(4):674–683CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kamla Pathak
    • 1
  • Satyanarayan Pattnaik
    • 1
  1. 1.Department of Pharmaceutics, Pharmacy College SaifaiUttar Pradesh University of Medical SciencesSaifaiIndia

Personalised recommendations