Advertisement

Prediction of Human Liver Toxicity Using In Vitro Assays: Limitations and Opportunities

  • Franck A. AtienzarEmail author
  • Jean-Marie Nicolas
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

This chapter provides a short review of the current challenges to predict the risk for drug-induced liver injury (DILI) in humans using in vitro assays. Simple single cell-type in vitro cytotoxicity assays may fail to predict complex in vivo interconnected mechanism-based toxicities. Additionally, the lack of standardization of in vitro assays complicates data interpretation and makes assay comparison difficult. The selection of a given assay may depend on the DILI mechanism to be explored, short-term versus long-term culture, and the ability to study the toxicity of parent compounds or metabolites. Indeed, a single model is unlikely to address all the relevant mechanisms that can lead to liver toxicity. A better implementation of preclinical data as well as harmonization of current, emerging and novel in vitro systems should help to better predict human DILI. Case studies are also provided to illustrate how the in vitro assays can help to derisk preclinical in vivo toxicity findings and to better predict clinical human liver toxicity outcomes. Opportunities in the DILI field are also discussed, in particular the need to use more relevant in vitro models to better mimic the in vivo situation (e.g., pathological state, long term exposure, integration of inflammatory components), as well as the access to in vitro models from multiple species. Finally the use of relevant technologies (e.g., label free approach), in silico approaches integrating data from new chemical spaces, and the setting up of a preclinical DILI guidance from the scientific community and authorities are also important steps which should help the scientific community to improve DILI prediction.

Key words

In vitro DILI assays Limitations Opportunities Promises Predictivity In vitro–in vivo correlation Technology Guidance 

References

  1. 1.
    Purcell P, Henry D, Melville G (1991) Diclofenac hepatitis. Gut 32(11):1381–1385CrossRefGoogle Scholar
  2. 2.
    Leise MD, Poterucha JJ, Talwalkar JA (2014) Drug-induced liver injury. Mayo Clin Proc 89(1):95–106. https://doi.org/10.1016/j.mayocp.2013.09.016 CrossRefPubMedGoogle Scholar
  3. 3.
    Tilmant K, Gerets HH, De Ron P, Cossu-Leguille C, Vasseur P, Dhalluin S, Atienzar FA (2013) The automated micronucleus assay for early assessment of genotoxicity in drug discovery. Mutat Res 751(1):1–11. https://doi.org/10.1016/j.mrgentox.2012.10.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Yu HB, Zou BY, Wang XL, Li M (2016) Investigation of miscellaneous hERG inhibition in large diverse compound collection using automated patch-clamp assay. Acta Pharmacol Sin 37(1):111–123. https://doi.org/10.1038/aps.2015.143 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Bottger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gomez-Lechon MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Haussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhutter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stober R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, JJ X, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. https://doi.org/10.1007/s00204-013-1078-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Garcia-Canaveras JC, Castell JV, Donato MT, Lahoz A (2016) A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep 6:27239. https://doi.org/10.1038/srep27239 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang SZ, Lipsky MM, Trump BF, Hsu IC (1990) Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes. Cell Biol Toxicol 6(2):219–234CrossRefGoogle Scholar
  8. 8.
    Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150(1):115–128. https://doi.org/10.1016/j.cbi.2004.09.011 CrossRefGoogle Scholar
  9. 9.
    Gomez-Lechon MJ, Lahoz A, Gombau L, Castell JV, Donato MT (2010) In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 16(17):1963–1977CrossRefGoogle Scholar
  10. 10.
    Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161(III–XIII):1–151Google Scholar
  11. 11.
    Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE (2007) Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96(1):2–15. https://doi.org/10.1093/toxsci/kfl173 CrossRefPubMedGoogle Scholar
  12. 12.
    Bale SS, Vernetti L, Senutovitch N, Jindal R, Hegde M, Gough A, McCarty WJ, Bakan A, Bhushan A, Shun TY, Golberg I, DeBiasio R, Usta OB, Taylor DL, Yarmush ML (2014) In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood) 239(9):1180–1191. https://doi.org/10.1177/1535370214531872 CrossRefGoogle Scholar
  13. 13.
    Atienzar FA, Blomme EA, Chen M, Hewitt P, Kenna JG, Labbe G, Moulin F, Pognan F, Roth AB, Suter-Dick L, Ukairo O, Weaver RJ, Will Y, Dambach DM (2016) Key challenges and opportunities associated with the use of in vitro models to detect human DILI: integrated risk assessment and mitigation plans. Biomed Res Int 2016:9737920. https://doi.org/10.1155/2016/9737920 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borges N (2005) Tolcapone in Parkinson’s disease: liver toxicity and clinical efficacy. Expert Opin Drug Saf 4(1):69–73CrossRefGoogle Scholar
  15. 15.
    Lees AJ, Ratziu V, Tolosa E, Oertel WH (2007) Safety and tolerability of adjunctive tolcapone treatment in patients with early Parkinson’s disease. J Neurol Neurosurg Psychiatry 78(9):944–948. https://doi.org/10.1136/jnnp.2006.097154 CrossRefPubMedGoogle Scholar
  16. 16.
    Haasio K (2010) Toxicology and safety of COMT inhibitors. Int Rev Neurobiol 95:163–189. https://doi.org/10.1016/B978-0-12-381326-8.00007-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Longo DM, Yang Y, Watkins PB, Howell BA, Siler SQ (2016) Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym®, a mechanistic model of drug-induced liver injury. CPT Pharmacometrics Syst Pharmacol 5(1):31–39. https://doi.org/10.1002/psp4.12053 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith KS, Smith PL, Heady TN, Trugman JM, Harman WD, Macdonald TL (2003) In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity. Chem Res Toxicol 16(2):123–128. https://doi.org/10.1021/tx025569n CrossRefPubMedGoogle Scholar
  19. 19.
    Martignoni E, Cosentino M, Ferrari M, Porta G, Mattarucchi E, Marino F, Lecchini S, Nappi G (2005) Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism. Neurology 65(11):1820–1822. https://doi.org/10.1212/01.wnl.0000187066.81162.70 CrossRefPubMedGoogle Scholar
  20. 20.
    Rojo A, Fontan A, Mena MA, Herranz A, Casado S, de Yebenes JG (2001) Tolcapone increases plasma catecholamine levels in patients with Parkinson’s disease. Parkinsonism Relat Disord 7(2):93–96CrossRefGoogle Scholar
  21. 21.
    Dragovic S, Vermeulen NP, Gerets HH, Hewitt PG, Ingelman-Sundberg M, Park BK, Juhila S, Snoeys J, Weaver RJ (2016) Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol 90(12):2979–3003. https://doi.org/10.1007/s00204-016-1845-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nicolas JM, Chanteux H, Mancel V, Dubin GM, Gerin B, Staelens L, Depelchin O, Kervyn S (2014) N-alkylprotoporphyrin formation and hepatic porphyria in dogs after administration of a new antiepileptic drug candidate: mechanism and species specificity. Toxicol Sci 141(2):353–364. https://doi.org/10.1093/toxsci/kfu131 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lin YH, Chang HM, Chang FP, Shen CR, Liu CL, Mao WY, Lin CC, Lee HS, Shen CN (2013) Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes. FEBS Lett 587(19):3202–3209. https://doi.org/10.1016/j.febslet.2013.08.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Hagiwara S, Nishida N, Park AM, Sakurai T, Kawada A, Kudo M (2015) Impaired expression of ATP-binding cassette transporter G2 and liver damage in erythropoietic protoporphyria. Hepatology 62(5):1638–1639. https://doi.org/10.1002/hep.27871 CrossRefPubMedGoogle Scholar
  25. 25.
    Wong SG, Marks GS (1999) Formation of N-alkylprotoporphyrin IX after interaction of porphyrinogenic xenobiotics with rat liver microsomes. J Pharmacol Toxicol Methods 42(3):107–113CrossRefGoogle Scholar
  26. 26.
    Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4(10):1279–1294. https://doi.org/10.1517/17425255.4.10.1279 CrossRefPubMedGoogle Scholar
  27. 27.
    Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I (2013) In vitro models for liver toxicity testing. Toxicol Res (Camb) 2(1):23–39. https://doi.org/10.1039/C2TX20051A CrossRefGoogle Scholar
  28. 28.
    Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87. https://doi.org/10.1007/s10565-011-9208-4 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Masters JR (2000) Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol 1(3):233–236. https://doi.org/10.1038/35043102 CrossRefPubMedGoogle Scholar
  30. 30.
    Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, Ayanoglu G, Irrechukwu O, Evers R (2015) Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos 43(5):774–785. https://doi.org/10.1124/dmd.114.061317 CrossRefGoogle Scholar
  31. 31.
    Pfeiffer E, Kegel V, Zeilinger K, Hengstler JG, Nussler AK, Seehofer D, Damm G (2015) Featured article: isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp Biol Med (Maywood) 240(5):645–656. https://doi.org/10.1177/1535370214558025 CrossRefGoogle Scholar
  32. 32.
    Bale SS, Geerts S, Jindal R, Yarmush ML (2016) Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 6:25329. https://doi.org/10.1038/srep25329 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hadi M, Westra IM, Starokozhko V, Dragovic S, Merema MT, Groothuis GM (2013) Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem Res Toxicol 26(5):710–720. https://doi.org/10.1021/tx300519p CrossRefPubMedGoogle Scholar
  34. 34.
    Martinez I, Nedredal GI, Oie CI, Warren A, Johansen O, Le Couteur DG, Smedsrod B (2008) The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells. Comp Hepatol 7:4. https://doi.org/10.1186/1476-5926-7-4 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sanchez JJ, Ladurner R, Thasler W, Damm G, Nussler AK (2015) 3D cultivation techniques for primary human hepatocytes. Microarrays (Basel) 4(1):64–83. https://doi.org/10.3390/microarrays4010064 CrossRefGoogle Scholar
  36. 36.
    Hallifax D, Foster JA, Houston JB (2010) Prediction of human metabolic clearance from in vitro systems: retrospective analysis and prospective view. Pharm Res 27(10):2150–2161. https://doi.org/10.1007/s11095-010-0218-3 CrossRefPubMedGoogle Scholar
  37. 37.
    Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31(5):580–588CrossRefGoogle Scholar
  38. 38.
    Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, Dhalluin S (2014) Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol 275(1):44–61. https://doi.org/10.1016/j.taap.2013.11.022 CrossRefPubMedGoogle Scholar
  39. 39.
    Irrechukwu O, Delatour C, Gerets H, Tilmant K, Kanchagar C, Ungell AL, Moore A, Dhalluin S, Khetani SR, Ukairo O, Atienzar FA (2017) Assessment of drug induced liver injury and metabolite formation in engineered human micropatterned hepatocyte co-cultures. SOT, Baltimore, MD, 12–16 Mar Poster 136Google Scholar
  40. 40.
    Balls M (1995) In vitro methods in regulatory toxicology: the crucial significance of validation. Arch Toxicol Suppl 17:155–162CrossRefGoogle Scholar
  41. 41.
    Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15-16):697–703. https://doi.org/10.1016/j.drudis.2011.05.007 CrossRefGoogle Scholar
  42. 42.
    Chen M, Suzuki A, Shraddha T, Yu K, Hu C, Tong W (2016) DILIrank – the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today. https://doi.org/10.1016/j.drudis.2016.1002.1015
  43. 43.
    Thompson D (2016) Lack of adequate classification of hepatotoxicants hinders development of predictive in vitro screening assays. Annual meeting abstract supplement, society of toxicology, abstract no. 2017Google Scholar
  44. 44.
    Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS (2013) A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 41(12):1975–1993. https://doi.org/10.1124/dmd.113.054031 CrossRefPubMedGoogle Scholar
  45. 45.
    Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8(3):203–212. https://doi.org/10.1038/nrd2796 CrossRefPubMedGoogle Scholar
  46. 46.
    Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486. https://doi.org/10.1038/nrd4609 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Di L, Obach RS (2015) Addressing the challenges of low clearance in drug research. AAPS J 17(2):352–357. https://doi.org/10.1208/s12248-014-9691-7 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105(1):97–105CrossRefGoogle Scholar
  49. 49.
    Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, Aoyama S, Aleo M, Will Y (2012) The use of micropatterned co-cultures to detect compounds that cause drug induced liver injury in humans. Toxicol Sci 132(1):107–117CrossRefGoogle Scholar
  50. 50.
    Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, Dolgos H, Weaver R, Kenna JG (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25(8):1616–1632. https://doi.org/10.1021/tx300091x CrossRefGoogle Scholar
  51. 51.
    Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, Ullah M, Marschmann M, Zihlmann C, Siegrist YM, Cascais AC, Di Lenarda E, Durr E, Schaub N, Ang X, Starke V, Singer T, Alvarez-Sanchez R, Roth AB, Schuler F, Funk C (2015) Minimizing DILI risk in drug discovery – a screening tool for drug candidates. Toxicol In Vitro 30(1 Pt B):429–437. https://doi.org/10.1016/j.tiv.2015.09.019 CrossRefGoogle Scholar
  52. 52.
    Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485. https://doi.org/10.1056/NEJMra021844 CrossRefPubMedGoogle Scholar
  53. 53.
    Hirano H, Kurata A, Onishi Y, Sakurai A, Saito H, Nakagawa H, Nagakura M, Tarui S, Kanamori Y, Kitajima M, Ishikawa T (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 3(3):252–265. https://doi.org/10.1021/mp060004w CrossRefPubMedGoogle Scholar
  54. 54.
    Xi L, Yao J, Wei Y, Wu X, Yao X, Liu H, Li S (2017) The in silico identification of human bile salt export pump (ABCB11) inhibitors associated with cholestatic drug-induced liver injury. Mol Biosyst 13(2):417–424. https://doi.org/10.1039/c6mb00744a CrossRefPubMedGoogle Scholar
  55. 55.
    Rodrigues AD, Lai Y, Cvijic ME, Elkin LL, Zvyaga T, Soars MG (2014) Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 42(4):566–574. https://doi.org/10.1124/dmd.113.054205 CrossRefPubMedGoogle Scholar
  56. 56.
    Antherieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A (2013) Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology 57(4):1518–1529. https://doi.org/10.1002/hep.26160 CrossRefPubMedGoogle Scholar
  57. 57.
    Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42(3):446–471. https://doi.org/10.3109/03602530903491881 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolai J, Augustijns P, Annaert P (2013) Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 9(5):589–616. https://doi.org/10.1517/17425255.2013.773973 CrossRefPubMedGoogle Scholar
  59. 59.
    Germano D, Uteng M, Pognan F, Chibout SD, Wolf A (2014) Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2014.05.009
  60. 60.
    Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L (2016) Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro 34:179–186. https://doi.org/10.1016/j.tiv.2016.03.008 CrossRefPubMedGoogle Scholar
  61. 61.
    Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson DR (2012) Iron chelators for the treatment of cancer. Curr Med Chem 19(17):2689–2702CrossRefGoogle Scholar
  62. 62.
    Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97(2):539–547. https://doi.org/10.1093/toxsci/kfm052 CrossRefPubMedGoogle Scholar
  63. 63.
    Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, Chen W, Clish CB, Ayata C, Brookes PS, Mootha VK (2010) Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28(3):249–255. https://doi.org/10.1038/nbt.1606 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kirstein SL, Atienza JM, Xi B, Zhu J, Yu N, Wang X, Xu X, Abassi YA (2006) Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev Technol 4(5):545–553. https://doi.org/10.1089/adt.2006.4.545 CrossRefPubMedGoogle Scholar
  65. 65.
    Caplin JD, Granados NG, James MR, Montazami R, Hashemi N (2015) Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv Healthc Mater 4(10):1426–1450. https://doi.org/10.1002/adhm.201500040 CrossRefPubMedGoogle Scholar
  66. 66.
    Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126. https://doi.org/10.1038/nbt1361 CrossRefGoogle Scholar
  67. 67.
    Gomez-Lechon MJ, Tolosa L (2016) Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 90(9):2049–2061. https://doi.org/10.1007/s00204-016-1756-1 CrossRefPubMedGoogle Scholar
  68. 68.
    Lauschke VM, Hendriks DF, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29(12):1936–1955. https://doi.org/10.1021/acs.chemrestox.6b00150 CrossRefPubMedGoogle Scholar
  69. 69.
    Anada T, Fukuda J, Sai Y, Suzuki O (2012) An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 33(33):8430–8441. https://doi.org/10.1016/j.biomaterials.2012.08.040 CrossRefPubMedGoogle Scholar
  70. 70.
    Mueller SO, Guillouzo A, Hewitt PG, Richert L (2015) Drug biokinetic and toxicity assessments in rat and human primary hepatocytes and HepaRG cells within the EU-funded Predict-IV project. Toxicol In Vitro 30(1 Pt A):19–26. https://doi.org/10.1016/j.tiv.2015.04.014 CrossRefPubMedGoogle Scholar
  71. 71.
    Honkoop P, Scholte HR, de Man RA, Schalm SW (1997) Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf 17(1):1–7CrossRefGoogle Scholar
  72. 72.
    McKenzie R, Fried MW, Sallie R, Conjeevaram H, Di Bisceglie AM, Park Y, Savarese B, Kleiner D, Tsokos M, Luciano C et al (1995) Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 333(17):1099–1105. https://doi.org/10.1056/NEJM199510263331702 CrossRefPubMedGoogle Scholar
  73. 73.
    Lebron JLL, Kulkarni S. et al (2015) Differential effects of FIAU, FIRU and DDC on functional and DNA content endpoints in HepatoPac andHuh-7 cells in proceedings of the 54th annual meeting of the society of toxicology, abstract 621Google Scholar
  74. 74.
    Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399 CrossRefGoogle Scholar
  75. 75.
    Bale SS, Moore L, Yarmush M, Jindal R (2016) Emerging in vitro liver technologies for drug metabolism and inter-organ interactions. Tissue Eng Part B Rev 22(5):383–394. https://doi.org/10.1089/ten.TEB.2016.0031 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Van den Hof WF, Ruiz-Aracama A, Van Summeren A, Jennen DG, Gaj S, Coonen ML, Brauers K, Wodzig WK, van Delft JH, Kleinjans JC (2015) Integrating multiple omics to unravel mechanisms of cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro 29(3):489–501. https://doi.org/10.1016/j.tiv.2014.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Przybylak KR, Cronin MT (2012) In silico models for drug-induced liver injury—current status. Expert Opin Drug Metab Toxicol 8(2):201–217. https://doi.org/10.1517/17425255.2012.648613 CrossRefPubMedGoogle Scholar
  78. 78.
    Noor F (2015) A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 593(23):5043–5055. https://doi.org/10.1113/JP271124 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KL (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96(5):589–598. https://doi.org/10.1038/clpt.2014.158 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Howell BA, Siler SQ, Watkins PB (2014) Use of a systems model of drug-induced liver injury (DILIsym®) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Toxicol Lett 226(2):163–172. https://doi.org/10.1016/j.toxlet.2014.02.007 CrossRefPubMedGoogle Scholar
  81. 81.
    Ulrich RG (2007) Idiosyncratic toxicity: a convergence of risk factors. Annu Rev Med 58:17–34. https://doi.org/10.1146/annurev.med.58.072905.160823 CrossRefGoogle Scholar
  82. 82.
    Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC, JC W (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691. https://doi.org/10.1161/CIRCULATIONAHA.113.001883 CrossRefPubMedGoogle Scholar
  83. 83.
    Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E (2015) Morphological and functional characterization and assessment of iPSC-derived hepatocytes for in vitro toxicity testing. Toxicol Sci 147(1):39–54. https://doi.org/10.1093/toxsci/kfv117 CrossRefGoogle Scholar
  84. 84.
    Ukairo O, Kanchagar C, Moore A, Shi J, Gaffney J, Aoyama S, Rose K, Krzyzewski S, McGeehan J, Andersen ME, Khetani SR, Lecluyse EL (2013) Long-term stability of primary rat hepatocytes in micropatterned cocultures. J Biochem Mol Toxicol 27(3):204–212. https://doi.org/10.1002/jbt.21469 CrossRefPubMedGoogle Scholar
  85. 85.
    Shaw PJ, Beggs KM, Sparkenbaugh EM, Dugan CM, Ganey PE, Roth RA (2009) Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity. Toxicol Sci 111(2):288–301. https://doi.org/10.1093/toxsci/kfp163 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, Depelchin O, Dhalluin S (2011) The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J Biomol Screen 16(6):575–587. https://doi.org/10.1177/1087057111402825 CrossRefPubMedGoogle Scholar
  87. 87.
    Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X (2009) Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 16(7):712–723. https://doi.org/10.1016/j.chembiol.2009.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Atienzar FA, Gerets H, Tilmant K, Toussaint G, Dhalluin S (2013) Evaluation of impedance-based label-free technology as a tool for pharmacology and toxicology investigations. Biosensors 3(1):132–156. https://doi.org/10.3390/bios3010132 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Funk C, Roth A (2017) Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 91(1):131–142. https://doi.org/10.1007/s00204-016-1874-9 CrossRefPubMedGoogle Scholar
  90. 90.
    Mulliner D, Schmidt F, Stolte M, Spirkl HP, Czich A, Amberg A (2016) Computational models for human and animal hepatotoxicity with a global application scope. Chem Res Toxicol 29(5):757–767. https://doi.org/10.1021/acs.chemrestox.5b00465 CrossRefPubMedGoogle Scholar
  91. 91.
    Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8(2):201–213. https://doi.org/10.2217/bmm.13.146 CrossRefPubMedGoogle Scholar
  92. 92.
    Nelms MD, Mellor CL, Cronin MT, Madden JC, Enoch SJ (2015) Development of an in silico profiler for mitochondrial toxicity. Chem Res Toxicol 28(10):1891–1902. https://doi.org/10.1021/acs.chemrestox.5b00275 CrossRefPubMedGoogle Scholar
  93. 93.
    Watkins P (2015) The dili-sim initiative, integrated systems pharmacology modeling to explain and predict drug hepatotoxicity. Clin Ther 37 8S, e170Google Scholar
  94. 94.
    Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Muller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, White P (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628(1):31–55. https://doi.org/10.1016/j.mrgentox.2006.11.008 CrossRefPubMedGoogle Scholar
  95. 95.
    Kirkland D, Kasper P, Muller L, Corvi R, Speit G (2008) Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop. Mutat Res 653(1-2):99–108. https://doi.org/10.1016/j.mrgentox.2008.03.008 CrossRefPubMedGoogle Scholar
  96. 96.
    Willyard C (2016) Foretelling toxicity: FDA researchers work to predict risk of liver injury from drugs. Nat Med 22(5):450–451. https://doi.org/10.1038/nm0516-450 CrossRefPubMedGoogle Scholar
  97. 97.
    Kratochwil NA, Meille C, Fowler S, Klammers F, Ekiciler A, Molitor B, Simon S, Walter I, McGinnis C, Walther J, Leonard B, Triyatni M, Javanbakht H, Funk C, Schuler F, Lave T, Parrott NJ (2017) Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling. AAPS J 19(2):534–550. https://doi.org/10.1208/s12248-016-0019-7 CrossRefPubMedGoogle Scholar
  98. 98.
    Ballard TE, Wang S, Cox LM, Moen MA, Krzyzewski S, Ukairo O, Obach RS (2016) Application of a micropatterned cocultured hepatocyte system to predict preclinical and human-specific drug metabolism. Drug Metab Dispos 44(2):172–179. https://doi.org/10.1124/dmd.115.066688 CrossRefPubMedGoogle Scholar
  99. 99.
    Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML (2010) A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem Pharmacol 79(7):1036–1044. https://doi.org/10.1016/j.bcp.2009.11.010 CrossRefPubMedGoogle Scholar
  100. 100.
    Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262. https://doi.org/10.1093/toxsci/kfv048 CrossRefPubMedGoogle Scholar
  101. 101.
    Ramsden D, Tweedie DJ, St George R, Chen LZ, Li Y (2014) Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (HepatoPac). Drug Metab Dispos 42(3):407–414. https://doi.org/10.1124/dmd.113.055947 CrossRefPubMedGoogle Scholar
  102. 102.
    Ramsden D, Tweedie DJ, Chan TS, Taub ME, Li Y (2014) Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac. Drug Metab Dispos 42(3):394–406. https://doi.org/10.1124/dmd.113.055897 CrossRefPubMedGoogle Scholar
  103. 103.
    Chan TS, Yu H, Moore A, Khetani SR, Tweedie D (2013) Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 41(12):2024–2032. https://doi.org/10.1124/dmd.113.053397 CrossRefGoogle Scholar
  104. 104.
    Lin C, Shi J, Moore A, Khetani SR (2016) Prediction of drug clearance and drug-drug interactions in microscale cultures of human hepatocytes. Drug Metab Dispos 44(1):127–136. https://doi.org/10.1124/dmd.115.066027 CrossRefPubMedGoogle Scholar
  105. 105.
    Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS (2010) Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metab Dispos 38(10):1900–1905. https://doi.org/10.1124/dmd.110.034876 CrossRefPubMedGoogle Scholar
  106. 106.
    Allen JW, Khetani SR, Bhatia SN (2005) In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84(1):110–119. https://doi.org/10.1093/toxsci/kfi052 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Non-Clinical Development, Investigative Toxicology GroupUCB BioPharma SPRLBraine-l’AlleudBelgium
  2. 2.Non-Clinical Development, Development DMPK/PKPDUCB BioPharma SPRLBraine-l’AlleudBelgium

Personalised recommendations