Advertisement

Physicochemical Properties and Structural Alerts

  • Lilia FiskEmail author
  • Nigel Greene
  • Russ Naven
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Drug-induced liver injury (DILI) is one of the major reasons for the termination of drug candidates in the development and the withdrawal of drugs from the market. Significant efforts are being made to utilize existing knowledge of chemical and biological mechanisms that have been linked with causing DILI. These mechanisms are often varied and can include overt chemical reactivity or bioactivation to reactive metabolites; unintended interactions with cellular proteins such as transporters and nuclear receptors; or the disruption of cellular processes like mitochondrial function and oxidative stress. For DILI to be observed the chemical needs (1) to possess the required chemical features to disrupt biological processes and (2) to reach a certain concentration in the liver. Structure–activity relationships (SARs) are often used to determine whether a chemical possesses the required features to disrupt a biological process. Whereas the concentration of a drug in the liver is highly dependent on its physicochemical properties as these influence many pharmacokinetic characteristics. However, despite the ability to assess compounds for their potential to cause DILI using in silico methods in combination with a battery of in vitro assays, it is often difficult to accurately predict the risk for a specific compound as the efficacious concentration is often not truly known until it reaches the clinic and is tested in man. In addition, the complexities of mechanisms that can lead to hepatotoxicity make the accurate identification of liver toxicants a challenging task. This chapter summarizes the importance of the consideration of physicochemical properties while applying SARs for toxicity assessment.

Key words

Structure–activity relationships Hepatotoxicity Reactivity Physicochemical properties Mitochondrial dysfunction 

References

  1. 1.
    Grime KH, Barton P, McGinnity DF (2013) Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol Pharm 10(4):1191–1206. https://doi.org/10.1021/mp300476z CrossRefPubMedGoogle Scholar
  2. 2.
    Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, El-Kattan A, Troutman MD (2010) Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem 53(3):1098–1108. https://doi.org/10.1021/jm901371v CrossRefPubMedGoogle Scholar
  3. 3.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 CrossRefGoogle Scholar
  4. 4.
    Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939. https://doi.org/10.1038/nrd3287 CrossRefPubMedGoogle Scholar
  5. 5.
    Hollosy F, Valko K, Hersey A, Nunhuck S, Keri G, Bevan C (2006) Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning. J Med Chem 49(24):6958–6971. https://doi.org/10.1021/jm050957i CrossRefPubMedGoogle Scholar
  6. 6.
    Vallianatou T, Lambrinidis G, Tsantili-Kakoulidou A (2013) In silico prediction of human serum albumin binding for drug leads. Expert Opin Drug Dis 8(5):583–595. https://doi.org/10.1517/17460441.2013.777424 CrossRefGoogle Scholar
  7. 7.
    Sutherland JJ, Raymond JW, Stevens JL, Baker TK, Watson DE (2012) Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem 55(14):6455–6466. https://doi.org/10.1021/jm300684u CrossRefPubMedGoogle Scholar
  8. 8.
    Zhivkova Z, Doytchinova I (2013) Quantitative structure–clearance relationships of acidic drugs. Mol Pharm 10(10):3758–3768. https://doi.org/10.1021/mp400251k CrossRefPubMedGoogle Scholar
  9. 9.
    Egan WJ, Zlokarnik G, Grootenhuis PD (2004) In silico prediction of drug safety: despite progress there is abundant room for improvement. Drug Discov Today Technol 1(4):381–387. https://doi.org/10.1016/j.ddtec.2004.11.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ (2010) Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23(7):1215–1222. https://doi.org/10.1021/tx1000865 CrossRefGoogle Scholar
  11. 11.
    Zimmerman HJ (1999) Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  12. 12.
    Ludwig J, Axelsen R (1983) Drug effects on the liver. An updated tabular compilation of drugs and drug-related hepatic diseases. Dig Dis Sci 28(7):651–666CrossRefGoogle Scholar
  13. 13.
    Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485. https://doi.org/10.1056/NEJMra021844 CrossRefPubMedGoogle Scholar
  14. 14.
    Hewitt M, Enoch SJ, Madden JC, Przybylak KR, Cronin MT (2013) Hepatotoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action. Crit Rev Toxicol 43(7):537–558. https://doi.org/10.3109/10408444.2013.811215 CrossRefPubMedGoogle Scholar
  15. 15.
    Pizzo F, Gadaleta D, Lombardo A, Nicolotti O, Benfenati E (2015) Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J 9:62. https://doi.org/10.1186/s13065-015-0139-7 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sakuratani Y, Zhang HQ, Nishikawa S, Yamazaki K, Yamada T, Yamada J, Gerova K, Chankov G, Mekenyan O, Hayashi M (2013) Hazard Evaluation Support System (HESS) for predicting repeated dose toxicity using toxicological categories. SAR QSAR Environ Res 24(5):351–363. https://doi.org/10.1080/1062936X.2013.773375 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu R, Yu X, Wallqvist A (2015) Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries. J Chem 7(1):4. https://doi.org/10.1186/s13321-015-0053-y CrossRefGoogle Scholar
  18. 18.
    Pizzo F, Lombardo A, Manganaro A, Benfenati E (2016) A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol 7:442. https://doi.org/10.3389/fphar.2016.00442 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Corcoran GB, Mitchell JR, Vaishnav YN, Horning EC (1980) Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol 18(3):536–542PubMedGoogle Scholar
  20. 20.
    Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV protective role of glutathione. J Pharmacol Exp Ther 187(1):211–217PubMedGoogle Scholar
  21. 21.
    Kalgutkar AS, Dalvie D (2015) Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 55:35–54. https://doi.org/10.1146/annurev-pharmtox-010814-124720 CrossRefPubMedGoogle Scholar
  22. 22.
    Dansette PM, Amar C, Valadon P, Pons C, Beaune PH, Mansuy D (1991) Hydroxylation and formation of electrophilic metabolites of tienilic acid and its isomer by human liver microsomes. Catalysis by a cytochrome P450 IIC different from that responsible for mephenytoin hydroxylation. Biochem Pharmacol 41(4):553–560CrossRefGoogle Scholar
  23. 23.
    Manier JW, Chang WW, Kirchner JP, Beltaos E (1982) Hepatotoxicity associated with ticrynafen—a uricosuric diuretic. Am J Gastroenterol 77(6):401–404PubMedGoogle Scholar
  24. 24.
    Dang NL, Hughes TB, Miller GP, Swamidass SJ (2017) Computational approach to structural alerts: furans, phenols, nitroaromatics, and thiophenes. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.6b00336
  25. 25.
    Shah F, Leung L, Barton HA, Will Y, Rodrigues AD, Greene N, Aleo MD (2015) Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol Sci 147(2):500–514. https://doi.org/10.1093/toxsci/kfv152 CrossRefPubMedGoogle Scholar
  26. 26.
    Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 24(9):1345–1410. https://doi.org/10.1021/tx200168d CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alvarez-Sanchez R, Montavon F, Hartung T, Pahler A (2006) Thiazolidinedione bioactivation: a comparison of the bioactivation potentials of troglitazone, rosiglitazone, and pioglitazone using stable isotope-labeled analogues and liquid chromatography tandem mass spectrometry. Chem Res Toxicol 19(8):1106–1116. https://doi.org/10.1021/tx050353h CrossRefPubMedGoogle Scholar
  28. 28.
    Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW Jr, Lightfoot-Dunn R, Hamadeh HK (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118(2):485–500. https://doi.org/10.1093/toxsci/kfq269 CrossRefPubMedGoogle Scholar
  29. 29.
    Masubuchi Y, Kano S, Horie T (2006) Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones. Toxicology 222(3):233–239. https://doi.org/10.1016/j.tox.2006.02.017 CrossRefPubMedGoogle Scholar
  30. 30.
    Kaimal R, Song X, Yan B, King R, Deng R (2009) Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. J Pharmacol Exp Ther 330(1):125–134. https://doi.org/10.1124/jpet.109.151233 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18(17):4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890. https://doi.org/10.1038/nrd2445 CrossRefPubMedGoogle Scholar
  33. 33.
    Price DA, Blagg J, Jones L, Greene N, Wager T (2009) Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin Drug Metab Toxicol 5(8):921–931. https://doi.org/10.1517/17425250903042318 CrossRefPubMedGoogle Scholar
  34. 34.
    Tolosa L, Gómez-Lechón MJ, Pérez-Cataldo G, Castell JV, Donato MT (2013) HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. Arch Toxicol 87(6):1115–1127. https://doi.org/10.1007/s00204-013-1012-x CrossRefPubMedGoogle Scholar
  35. 35.
    Saito J, Okamura A, Takeuchi K, Hanioka K, Okada A, Ohata T (2016) High content analysis assay for prediction of human hepatotoxicity in HepaRG and HepG2 cells. Toxicol In Vitro 33:63–70. https://doi.org/10.1016/j.tiv.2016.02.019 CrossRefPubMedGoogle Scholar
  36. 36.
    Rana P, Naven R, Narayanan A, Will Y, Jones LH (2013) Chemical motifs that redox cycle and their associated toxicity. MedChemComm 4(8):1175–1180. https://doi.org/10.1039/C3MD00149K CrossRefGoogle Scholar
  37. 37.
    Badr M, Yoshihara H, Kauffman F, Thurman R (1987) Menadione causes selective toxicity to periportal regions of the liver lobule. Toxicol Lett 35(2–3):241–246CrossRefGoogle Scholar
  38. 38.
    Naven RT, Swiss R, Klug-Mcleod J, Will Y, Greene N (2013) The development of structure-activity relationships for mitochondrial dysfunction: uncoupling of oxidative phosphorylation. Toxicol Sci 131(1):271–278. https://doi.org/10.1093/toxsci/kfs279 CrossRefPubMedGoogle Scholar
  39. 39.
    Mehta R, Chan K, Lee O, Tafazoli S, O'Brien PJ (2008) Drug-associated mitochondrial toxicity. In: Wojtczak L (ed) Drug-induced mitochondrial dysfunction. John Wiley & Sons, Inc, Hoboken, NJ, pp 71–126. https://doi.org/10.1002/9780470372531.ch3 CrossRefGoogle Scholar
  40. 40.
    Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y (2014) Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60(3):1015–1022. https://doi.org/10.1002/hep.27206 CrossRefPubMedGoogle Scholar
  41. 41.
    Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40(1):130–138. https://doi.org/10.1124/dmd.111.040758 CrossRefPubMedGoogle Scholar
  42. 42.
    Pedersen JM, Matsson P, Bergström CAS, Hoogstraate J, Norén A, LeCluyse EL, Artursson P (2013) Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci 136(2):328–343. https://doi.org/10.1093/toxsci/kft197 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Warner DJ, Chen H, Cantin L-D, Kenna JG, Stahl S, Walker CL, Noeske T (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab Dispos 40(12):2332–2341. https://doi.org/10.1124/dmd.112.047068 CrossRefPubMedGoogle Scholar
  44. 44.
    Sakurai A, Kurata A, Onishi Y, Hirano H, Ishikawa T (2007) Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis ofdrugs inhibiting the human bile salt export pump. Expert Opin Drug Saf 6(1):71–86. https://doi.org/10.1517/14740338.6.1.71 CrossRefPubMedGoogle Scholar
  45. 45.
    Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW (2015) Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos 43(5):725–734. https://doi.org/10.1124/dmd.114.062539 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306. https://doi.org/10.1038/nrd3408 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP (2016) Reactive metabolites: current and emerging risk and hazard assessments. Chem Res Toxicol 29(4):505–533. https://doi.org/10.1021/acs.chemrestox.5b00410 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lhasa LimitedLeedsUK
  2. 2.Astra ZenecaWalthamUSA
  3. 3.Takeda InternationalCambridgeUSA

Personalised recommendations