Advertisement

Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties

  • Camilla Stephens
  • M. Isabel Lucena
  • Raúl J. Andrade
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Idiosyncratic drug-induced liver injury (DILI) occurs in a small proportion of individuals exposed to a drug and is unpredictable based on the drug’s pharmacological action and ingested dose. Due to the multifactorial pathology of this condition various factors associated with both the drug and the patient can affect DILI susceptibility and clinical presentation. A major challenge in the area of DILI is therefore to determine these risk factors and their interactions in order to predict individuals at risk of developing DILI. This would enable patients without significant DILI risk to securely benefit from an effective treatment (including medications with black box warnings for hepatotoxicity), while ensuring patient safety to those at increased risk by providing an alternative medication. Host-related DILI modifiers proposed to date include age, sex, genetic variations, associated conditions, concomitant medications and lifestyle. In addition, physicochemical and toxicological drug properties such as dose, lipophilicity, reactive metabolite formation, mitochondrial liability, and transporter inhibition are likewise assumed to have a potential modulating effect on DILI. Individually none of these host and drug-related features are likely to be sufficient to induce liver injury, but when combined could lead to DILI development. Hence, considering interactions between DILI host and drug factors could be more useful in predicting individuals at increased risk of developing DILI. In this chapter we provide an overview of the current understanding of risk factors for idiosyncratic DILI.

Key words

Genetic variations Age and gender Lifestyle Comorbidities and concomitant medications Physicochemical drug properties 

References

  1. 1.
    Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ, Liu ZX, Kaplowitz N (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34:243–253PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Stephens C, Andrade RJ, Lucena MI (2014) Mechanisms of drug-induced liver injury. Curr Opin Allergy Clin Immunol 14:286–292PubMedCrossRefGoogle Scholar
  3. 3.
    Dara L, Liu ZX, Kaplowitz N (2016) Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver Int 36:158–165PubMedCrossRefGoogle Scholar
  4. 4.
    Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI (2015) Drug-induced liver injury: interactions between drug properties and host factors. J Hepatol 63:503–514PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lucena MI, Andrade RJ, Kaplowitz N, García-Cortes M, Fernández MC, Romero-Gomez M, Bruguera M, Hallal H, Robles-Diaz M, Rodriguez-González JF, Navarro JM, Salmeron J, Martinez-Odriozola P, Perez-Alvarez R, Borraz Y, Hidalgo R, Spanish Group for the Study of Drug-Induced Liver Disease (2009) Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology 49:2001–2009PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J, Reddy KR, Watkins PB, Navarro V, Barnhart H, Gu J, Serrano J, United States Drug Induced Liver Injury Network (2015) Features and outcome of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 148:1340–1352PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fontana RJ, Hayashi PH, Barnhart H, Kleiner DE, Reddy KR, Chalasani N, Lee WM, Stolz A, Phillips T, Serrano J, Watkins PB, DILIN Investigators (2015) Persistent liver biochemistry abnormalities are more common in older patients and those with cholestatic drug induced liver injury. Am J Gastroenterol 110:1450–1459PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Medina-Caliz I, Robles-Díaz M, Garcia-Muñoz B, Stephens C, Ortega-Alonso A, Garcia-Cortes M, González-Jimenez A, Sanabria-Cabrera JA, Moreno I, Fernandez MC, Romero-Gomes M, Navarro JM, Barriocanal AM, Montane E, Hallal H, Blanco S, Soriano G, Roman EM, Gómez-Dominguez E, Castiella A, Zapata EM, Jimenez-Perez M, Moreno JM, Aldea-Perona A, Hernández-Guerra M et al (2016) Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. J Hepatol 65:532–542PubMedCrossRefGoogle Scholar
  9. 9.
    Bryant AE 3rd, Dreifuss FE (1996) Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology 46:465–469CrossRefPubMedGoogle Scholar
  10. 10.
    Felker D, Lynn A, Wang S, Johnson DE (2014) Evidence for a potential protective effect of carnitine-pantothenic acid co-treatment on valproic acid-induced hepatotoxicity. Expert Rev Clin Pharmacol 7:211–218PubMedCrossRefGoogle Scholar
  11. 11.
    Fountain FF, Tolley E, Chrisman CR, Self TH (2005) Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest 128:116–123PubMedCrossRefGoogle Scholar
  12. 12.
    Boelsterli UA, Lee KK (2014) Mechanisms of isoniazid-induced idiosyncratic liver injury: emerging role of mitochondrial stress. J Gastroenterol Hepatol 29:678–687PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hunt CM, Yuen NA, Stirnadel-Farrant HA, Suzuki A (2014) Age-related differences in reporting of drug-associated liver injury: data-mining of WHO safety report database. Regul Toxicol Pharmacol 70:519–526PubMedCrossRefGoogle Scholar
  14. 14.
    Guy J, Peters MG (2013) Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol Hepatol (N Y) 9:633–639Google Scholar
  15. 15.
    Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S (2013) Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 144:1419–1425PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    deLemos AS, Foureau DM, Jacobs C, Ahrens W, Russo MW, Bonkovsky HL (2014) Drug-induced liver injury with autoimmune features. Semin Liver Dis 34:194–204PubMedCrossRefGoogle Scholar
  17. 17.
    Robles-Díaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, Ulzurrun E, Gonzalez AF, Fernandez MC, Romero-Gómez M, Jimenez-Perez M, Bruguera M, Prieto M, Bessone F, Hernandez N, Arrese M, Andrade RJ, Spanish DILI Registry, SLatinDILI Network, Safer and Faster Evidence-based Translation Consortium (2014) Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology 147:109–118PubMedCrossRefGoogle Scholar
  18. 18.
    Reuben A, Koch DG, Lee WM, Acute Liver Failure Study Group (2010) Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 52:2065–2076PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Aceti A, Pasquazzi C, Zechini B, De Bac C, LIVERHAART Group (2002) Hepatotoxicity development during antiretroviral therapy containing protease inhibitors in patients with HIV: the role of hepatitis B and C virus infection. J Acquir Immune Defic Syndr 29:41–48PubMedCrossRefGoogle Scholar
  20. 20.
    Sulkowski MS, Thomas DL, Mehta SH, Chaisson RE, Moore RD (2002) Hepatotoxicity associated with nevirapine or efavirenz-containing antiretroviral therapy: role of hepatitis C and B infections. Hepatology 35:182–189PubMedCrossRefGoogle Scholar
  21. 21.
    Lomtadze N, Kupreishvili L, Salakaia A, Vashakidze S, Sharvadze L, Kempker RR, Magee MJ, del Rio C, Blumberg HM (2013) Hepatitis C virus co-infection increases the risk of anti-tuberculosis drug-induced hepatotoxicity among patients with pulmonary tuberculosis. PLoS One 8:e83892. https://doi.org/10.1371/journal.pone.0083892 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, Rochon J, Drug Induced Liver Injury Network (DILIN) (2008) Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 135:1924–1934PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Suzuki A, Yuen NA, Ilic K, Miller RT, Reese MJ, Brown HR, Ambroso JI, Falls JG, Hunt CM (2015) Comedications alter drug-induced liver injury reporting frequency: data mining in the WHO VigiBase. Regul Toxicol Pharmacol 72:481–490PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Suzuki A, Yuen N, Walsh J, Papay J, Hunt CM, Diehl AM (2009) Co-medications that modulate liver injury and repair influence clinical outcome of acetaminophen-associated liver injury. Clin Gastroenterol Hepatol 7:882–888PubMedCrossRefGoogle Scholar
  25. 25.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526PubMedCrossRefGoogle Scholar
  26. 26.
    Andrade RJ, Robles M, Ulzurrun E, Lucena MI (2009) Drug-induced liver injury: insight from genetic studies. Pharmacogenomics 10:1467–1487PubMedCrossRefGoogle Scholar
  27. 27.
    Ng CS, Hasnat A, Al Maruf A, Ahmed MU, Pirmohamed M, Day CP, Aithal GP, Daly AK (2014) N-acetyltransferase 2 (NAT2) genotype as a risk factor for development of drug-induced liver injury relating to antituberculosis drug treatment in a mixed-ethnicity patient group. Eur J Clin Pharmacol 70:1079–1086PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Du H, Chen X, Fang Y, Yan O, Xu H, Li L, Li W, Huang W (2013) Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis. Mol Biol Rep 40:3591–3596PubMedCrossRefGoogle Scholar
  29. 29.
    Lucena MI, Andrade RJ, Martínez C, Ulzurrun E, García-Martín E, Borraz Y, Fernández MC, Romero-Gomes M, Castiella A, Planas R, Costa J, Anzola S, Agúndez JA, Spanish Group for the Study of Drug-Induced Liver Disease (2008) Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology 48:588–596PubMedCrossRefGoogle Scholar
  30. 30.
    McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141:210–217PubMedCrossRefGoogle Scholar
  31. 31.
    Grove JI, Aithal GP (2015) Human leukocyte antigen genetic risk factors of drug-induced liver toxicology. Expert Opin Drug Metab Toxicol 11:395–409PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Petros Z, Makonnen E, Aklillu E (2017) Genome-wide association studies for idiosyncratic drug-induced hepatotoxicity: looking back–looking forward to next-generation innovation. OMICS 21:123–131PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Urban TJ, Nicoletti P, Chalasani N, Serrano J, Stolz A, Daly AK, Aithal GP, Dillon JF, Barnhart HX, Watkins PB, Fontana RJ (2015) Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. Hepatology 62(S1):1149AGoogle Scholar
  34. 34.
    Nicoletti P, Aithal GP, Björnsson ES, Adrade RJ, Sawle A, Arrese M, Barnhart HX, Bondon-Guitton E, Hayashi PH, Bessone F, Carvajal A, Cascorbi I, Chalasani N, Conforti A, Coulthard SA, Daly MJ, Day CP, Dillon JF, Fontana RJ, Grove JI, Hallberg P, Hernández N, Ibáñez L, Kullak-Ublick GA, Laitinene T et al (2017) Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology 152:1078–1089PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Aithal GP (2015) Pharmacogenetic testing in idiosyncratic drug-induced liver injury: current role in clinical practice. Liver Int 35:1801–1808PubMedCrossRefGoogle Scholar
  36. 36.
    Stephens C, López-Nevot MÁ, Ruiz-Cabello R, Ulzurrun E, Soriano G, Romero-Gómez M, Moreno-Casares A, Lucena MI, Andrade RJ (2013) HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One 8:e6811. https://doi.org/10.1371/journal.pone.0068111 CrossRefGoogle Scholar
  37. 37.
    Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, Day CP, Ruiz-Cabello F, Donaldson PT, Stephens C, Pirmohamed M, Romero-Gomez M, Navarro JM, Fontana RJ, Miller M, Groome M, Bondon-Guitton E, Conforti A, Stricker BH, Carvajal A, Ibanez L, Yue QY, Eichelbaum M, Floratos A, Pe’er I et al (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141:338–347PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Danan G, Benichou C (1993) Causality assessment of adverse reactions to drugs-1. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 46:1323–1330PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zimmerman HJ (1986) Effects of alcohol on other hepatotoxins. Alcohol Clin Exp Res 10:3–15PubMedCrossRefGoogle Scholar
  40. 40.
    Benowitz NL, Peng M, Jacob P 3rd (2003) Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther 74:468–474PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt LE, Dalhoff K (2003) The impact of current tobacco use in the outcome of paracetamol poisoning. Aliment Pharmacol Ther 18:979–985PubMedCrossRefGoogle Scholar
  42. 42.
    Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ (2012) Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol 57:860–866PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nieto N, Marí M, Cederbaum AI (2003) Cytochrome P450 2E1 responsiveness in the promoter of glutamate-cysteine ligase catalytic subunit. Hepatology 37:96–106PubMedCrossRefGoogle Scholar
  44. 44.
    Arrigo T, Leonardi S, Cuppari C, Manti S, Lanzafame A, D’Angelo G, Gitto E, Marseglia L, Salpietro C (2015) Role of th diet as a link between oxidative stress and liver diseases. World J Gastroenterol 21:384–395PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nguyen GC, Sam J, Thuluvath PJ (2008) Hepatitis C is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: a nationwide analysis. Hepatology 48:1336–1341PubMedCrossRefGoogle Scholar
  46. 46.
    Fernánez-Villar A, Sopeña B, Fernánez-Villar J, Vázquez-Gallardo R, Ulloa F, Leiro V, Mosteiro M, Piñeiro L (2004) The influence of risk factors on the severity of anti-tuberculosis drug-induced hepatotoxicity. Int J Tuberc Lung Dis 8:1499–1505Google Scholar
  47. 47.
    Warmelink I, ten Hacken NH, van der Werf TS, van Altena R (2011) Weight loss during tuberculosis treatment is an important risk factor for drug-induced hepatotoxicity. Br J Nutr 105:400–408PubMedCrossRefGoogle Scholar
  48. 48.
    Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G (2016) The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 20:4742–4749PubMedGoogle Scholar
  49. 49.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563CrossRefGoogle Scholar
  50. 50.
    Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ma HD, Wang YH, Chang C, Gershwin ME, Lian ZX (2015) The intestinal microbiota and microenvironment in liver. Autoimmun Rev 14:183–191PubMedCrossRefGoogle Scholar
  52. 52.
    Fontana RJ (2014) Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 46:914–928CrossRefGoogle Scholar
  53. 53.
    Swanson HI (2015) Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab Dispos 43:1499–1504PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Klaassen CD, Cui JY (2015) Review: mechanism of how intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos 43:1505–1521PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Selwyn FP, Cui JY, Klaassen CD (2015) RNA-seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos 43:1572–1580PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Peppercorn MA, Goldman P (1972) The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 181:555–562Google Scholar
  57. 57.
    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–298PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 106:14728–14733PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meanwell NA (2011) Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 24:1420–1456PubMedCrossRefGoogle Scholar
  60. 60.
    Kalgutkar AS, Dalvie D (2015) Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 55:35–54PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Uetrecht JP (1999) New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol 12:387–395PubMedCrossRefGoogle Scholar
  62. 62.
    Roth RA, Ganey PE (2010) Intrinsic versus idiosyncratic drug-induced hepatotoxicity–two villains or one? J Pharmacol Exp Ther 332:692–697PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Carrascosa MF, Salcines-Caviedes JR, Lucena MI, Andrade RJ (2015) Acute liver failure following atorvastatin dose escalation: is there a threshold dose for idiosyncratic hepatotoxicity? J Hepatol 62:751–752PubMedCrossRefGoogle Scholar
  64. 64.
    Vuppalanchi R, Gotur R, Reddy KR, Fontana RJ, Ghabril M, Kosinski AS, Gu J, Serrano J, Chalasani N (2014) Relationship between characteristics of medications and drug-induced liver disease phenotype and outcome. Clin Gastroenterol Hepatol 12:1550–1555PubMedCrossRefGoogle Scholar
  65. 65.
    van de Waterbeemd H, Smith DA, Beaumont K, Walker DK (2001) Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 44:1313–1333CrossRefGoogle Scholar
  66. 66.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18:4872–4875PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chen M, Borlak J, Tong W (2013) High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58:388–396PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mishra P, Chen M (2017) Direct-acting antivirals for chronic hepatitis C: can drug properties signal potential for liver injury? Gastroenterology 152:1270–1274PubMedCrossRefGoogle Scholar
  70. 70.
    Weng Z, Wang K, Li H, Shi Q (2015) A comprehensive study of the association between drug hepatotoxicity and daily dose, liver metabolism, and lipophilicity using 975 oral medications. Oncotarget 10:17031–17038Google Scholar
  71. 71.
    Chen M, Borlak J, Tong W (2016) A model to predict severity of drug-induced liver injury in humans. Hepatology 64:931–940PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dalvie D, Kalgutkar AS, Chen W (2015) Practical approaches to resolving reactive metabolite liabilities in early discovery. Drug Metab Rev 47:56–70PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP (2016) Reactive metabolites: current and emerging risk and hazard assessments. Chem Res Toxicol 29:505–533PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 24:1345–1410PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Orbach RS, Kalgutkar AS, Ryder TF, Walker GS (2008) In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: insights into the hepatotoxicity of sudoxicam. Chem Res Toxicol 21:1890–1899CrossRefGoogle Scholar
  76. 76.
    Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities–a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220:92–107PubMedCrossRefGoogle Scholar
  77. 77.
    Porceddu M, Buron N, Roussel C, Labbe G, Fromenty B, Borgne-Sanchez A (2012) Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol Sci 129:332–345PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A (2012) Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 44:34–87PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314:876–882PubMedCrossRefGoogle Scholar
  80. 80.
    Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Müllhaupt B, Meier PJ, Pauli-Magnus C (2005) Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 43:536–543PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW Jr, Lightfoot-Dunn R, Hamadeh HK (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118:485–500PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pedersen JM, Matsson P, Bergström CA, Hoogstraate J, Norén A, LeCluyse EL, Artursson P (2013) Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci 136:328–343PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Warner DJ, Chen H, Cantin LD, Kenna JG, Stahl S, Walker CL, Noeske T (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modelling, and structural modifications. Drug Metab Dispos 40:2332–2341PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Geier A, Wagner M, Dietrich CG, Trauner M (2007) Principles of hepatic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 1773:283–308PubMedCrossRefGoogle Scholar
  85. 85.
    Morgan RE, van Staden CJ, Chen Y, Kalyanaraman N, Kalanzi J, Dunn RT 2nd, Afshari CA, Hamadeh HK (2013) A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci 136:216–241PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP (2007) Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132:272–281PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    den Braver MW, Zhang Y, Venkataraman H, Vermeulen NP, Commadeur JN (2016) Simulation of interindividual differences in inactivation of reactive para-benzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol. Toxicol Lett 255:52–62CrossRefGoogle Scholar
  88. 88.
    Gopaul S, Farrell K, Abbott F (2003) Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA. Epilepsia 44:322–328PubMedCrossRefGoogle Scholar
  89. 89.
    Ulzurrun E, Stephens C, Crespo E, Ruiz-Cabello F, Ruiz-Nuñez J, Saenz-López P, Moreno-Herrera I, Robles-Díaz M, Hallal H, Moreno-Planas JM, Cabello MR, Lucena MI, Andrade RJ (2013) Role of chemical structures and the 1331T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury. Liver Int 33:1378–1385PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lucena MI, García-Martín E, Andrade RJ, Martínez C, Stephens C, Ruiz JD, Ulzurrun E, Fernandez MC, Romero-Gomez M, Castiella A, Planas R, Durán JA, de Dios AM, Guarner C, Soriano G, Borraz Y, Agundez JA (2010) Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 52:303–312PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Metushi IG, Hayes MA, Uetrecht J (2014) Treatment of PD-1(−/−) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61:1332–1342CrossRefGoogle Scholar
  92. 92.
    Chakraborty M, Fullerton AM, Semple K, Chea LS, Proctor WR, Bourdi M, Kleiner DE, Zeng X, Ryan PM, Dagur PK, Berkson JD, Reilly TP, Pohl LR (2015) Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology 62:546–557PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shaw PJ, Hopfensperger MJ, Ganey PE, Roth RA (2007) Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicol Sci 100:259–266PubMedCrossRefGoogle Scholar
  94. 94.
    Deng X, Stachlewitz RF, Liguori MJ, Blomme EA, Waring JF, Luyendyk JP, Maddox JF, Ganey PE, Roth RA (2006) Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J Pharmacol Exp Ther 319:1191–1199PubMedCrossRefGoogle Scholar
  95. 95.
    Buchweitz JP, Ganey PE, Bursian SJ, Roth RA (2002) Underlying endotoxemia augments responses to chlorpromazine: is there a relationship to drug idiosyncrasy? J Pharmacol Exp Ther 300:460–467PubMedCrossRefGoogle Scholar
  96. 96.
    Lanas A, Sopeña F (2009) Nonsteroidal anti-inflammatory drugs and lower gastrointestinal complications. Gastroenterol Clin North Am 38:333–352PubMedCrossRefGoogle Scholar
  97. 97.
    Jackson MA, Goodrich JK, Maxan ME, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, Ley RE, Bell JT, Spector TD, Steves CJ (2016) Proton pump inhibitors alter the composition of the gut microbiota. Gut 65:749–756CrossRefGoogle Scholar
  98. 98.
    Watkins PB (2005) Idiosyncratic liver injury: challenges and approaches. Toxicol Pathol 33:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mehendale HM (2005) Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol Pathol 33:41–51PubMedCrossRefGoogle Scholar
  100. 100.
    Murali B, Korrapati MC, Warbritton A, Latendresse JR, Mehendale HM (2004) Tolerance of aged Fischer 344 rats against chlordecone-amplified carbon tetrachloride toxicity. Mech Ageing Dev 125:421–435PubMedCrossRefGoogle Scholar
  101. 101.
    Apte UM, Limaye PB, Desaiah D, Bucci TJ, Warbritton A, Mehendale HM (2003) Mechanisms of increased liver tissue repair and survival in diet-restricted rats treated with equitoxic doses of thioacetamide. Toxicol Sci 72:272–282PubMedCrossRefGoogle Scholar
  102. 102.
    Sawant SP, Dnyanmote AV, Warbritton A, Latendresse JR, Mehendale HM (2006) Type 2 diabetic rats are sensitive to thioacetamide hepatotoxicity. Toxicol Appl Pharmacol 211:221–232PubMedCrossRefGoogle Scholar
  103. 103.
    Cai SR, Motoyama K, Shen KJ, Kennedy SC, Flye MW, Ponder KP (2000) Lovastatin decreases mortality and improves liver functions in fulminant hepatic failure from 90% partial hepatectomy in rats. J Hepatol 32:67–77PubMedCrossRefGoogle Scholar
  104. 104.
    Yayama K, Sugiyama K, Miyagi R, Okamoto H (2007) Angiotensin-converting enzyme inhibitor enhances liver regeneration following partial hepatectomy: involvement of bradykinin B2 and angiotensin AT1 receptors. Biol Pharm Bull 30:591–594PubMedCrossRefGoogle Scholar
  105. 105.
    Oben JA, Roskams T, Yang S, Lin H, Sinelli N, Li Z, Torbenson M, Huang J, Guarino P, Kafrouni M, Diehl AM (2003) Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38:664–673PubMedCrossRefGoogle Scholar
  106. 106.
    Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM (2008) Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARalpha with clofibrate. Toxicol Appl Pharmacol 230:327–337PubMedCrossRefGoogle Scholar
  107. 107.
    Bhattacharya S, Shoda LK, Zhang Q, Woods CG, Howell BA, Siler SQ, Woodhead JL, Yang Y, McMullen P, Watkins PB, Andersen ME (2012) Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front Physiol 3:462. https://doi.org/10.3389/fphys.2012.00462 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Woodhead JL, Watkins PB, Howell BA, Siler SQ, Shoda LK (2017) The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab Pharmacokinet 32:40–45PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KLR (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Woodhead JL, Brock WJ, Roth SE, Shoaf SE, Brouwer KL, Church R, Grammatopoulos TN, Stiles L, Siler SQ, Howell BA, Mosedale M, Watkins PB, Shoda LK (2017) Application of a mechanistic model to evaluate putative mechanisms of tolvaptan drug-induced liver injury and identify patient susceptibility factors. Toxicol Sci 155:61–74PubMedCrossRefGoogle Scholar
  111. 111.
    Mann DA (2015) Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol 11:1–5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Camilla Stephens
    • 1
  • M. Isabel Lucena
    • 1
  • Raúl J. Andrade
    • 1
  1. 1.Unidad de Gestión de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la VictoriaUniversidad de MálagaMálagaSpain

Personalised recommendations