Advertisement

Peptidomics pp 311-318 | Cite as

Methodology for Urine Peptidome Analysis Based on Nano-HPLC Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Alexey S. Kononikhin
  • Victoria A. Sergeeva
  • Anna E. Bugrova
  • Maria I. Indeykina
  • Natalia L. Starodubtseva
  • Vitaliy V. Chagovets
  • Igor A. Popov
  • Vladimir E. Frankevich
  • Patrick Pedrioli
  • Gennady T. Sukhikh
  • Eugene N. Nikolaev
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1719)

Abstract

Urine is a sample of choice for noninvasive biomarkers search because it is easily available in large amounts and its molecular composition provides information on processes in the organism. The high potential of urine peptidomics has been demonstrated for clinical purpose. Several mass spectrometry based approaches have been successfully applied for urine peptidome analysis and potential biomarkers search. Summarizing literature data and our own experience we developed a protocol for comprehensive urine peptidome analysis. The technology includes several stages and consists of urine sample preparation by size exclusion chromatography and identification of featured peptides by nano-HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry, semiquantitative and statistical data analysis.

Key words

Urine peptidome Size exclusion chromatography FTICR MS LC-MS/MS 

Notes

Acknowledgments

The study was supported by RFBR grants no. 16-54-21011_SNF_а, 17-08-01537 A and SNF grant no. SNF IZLRZ3_163911.

References

  1. 1.
    Filip S, Pontillo C, Peter Schanstra J et al (2014) Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 11:535–548.  https://doi.org/10.1586/14789450.2014.926224 CrossRefPubMedGoogle Scholar
  2. 2.
    Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19:S55–S60.  https://doi.org/10.1016/S0167-7799(01)01800-5 CrossRefPubMedGoogle Scholar
  3. 3.
    Ivanov VT, Yatskin ON (2005) Peptidomics: a logical sequel to proteomics. Expert Rev Proteomics 2:463–473.  https://doi.org/10.1586/14789450.2.4.463 CrossRefPubMedGoogle Scholar
  4. 4.
    Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182.  https://doi.org/10.1016/j.euprot.2014.02.014 CrossRefGoogle Scholar
  5. 5.
    Machtejevas E, Marko-Varga G, Lindberg C et al (2009) Profiling of endogenous peptides by multidimensional liquid chromatography: on-line automated sample cleanup for biomarker discovery in human urine. J Sep Sci 32:2223–2232.  https://doi.org/10.1002/jssc.200900058 CrossRefPubMedGoogle Scholar
  6. 6.
    Yang X, Hu L, Ye M et al (2014) Analysis of the human urine endogenous peptides by nanoparticle extraction and mass spectrometry identification. Anal Chim Acta 829:40–47.  https://doi.org/10.1016/j.aca.2014.04.040 CrossRefPubMedGoogle Scholar
  7. 7.
    Broker ME, Lalmahomed ZS, Roest HP et al (2013) Collagen peptides in urine: a new promising biomarker for the detection of colorectal liver metastases. PLoS One 8:e70918.  https://doi.org/10.1371/journal.pone.0070918 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cutillas PR, Norden AG, Cramer R et al (2003) Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin Sci 104:483–490.  https://doi.org/10.1042/CS20020342 CrossRefPubMedGoogle Scholar
  9. 9.
    Ling XB, Lau K, Deshpande C et al (2010) Urine peptidomic and targeted plasma protein analyses in the diagnosis and monitoring of systemic juvenile idiopathic arthritis. Clin Proteomics 6:175–193.  https://doi.org/10.1007/s12014-010-9058-8 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ling XB, Lau K, Kanegaye JT et al (2011) A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses. BMC Med 9:130.  https://doi.org/10.1186/1741-7015-9-130 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nkuipou-Kenfack E, Zurbig P, Mischak H (2016) The long path towards implementation of clinical proteomics: exemplified based on CKD273. Proteomics Clin Appl 11:1600104.  https://doi.org/10.1002/prca.201600104 CrossRefGoogle Scholar
  12. 12.
    Buhimschi IA, Zhao G, Funai EF et al (2008) Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 199:551.e1–551.16.  https://doi.org/10.1016/j.ajog.2008.07.006 CrossRefGoogle Scholar
  13. 13.
    Carty DM, Siwy J, Brennand JE et al (2011) Urinary proteomics for prediction of preeclampsia. Hypertension 57:561–569.  https://doi.org/10.1161/HYPERTENSIONAHA.110.164285 CrossRefPubMedGoogle Scholar
  14. 14.
    Kononikhin AS, Starodubtseva NL, Bugrova AE et al (2016) An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J Proteome 149:38–43.  https://doi.org/10.1016/j.jprot.2016.04.024 CrossRefGoogle Scholar
  15. 15.
    Klein J, Papadopoulos T, Mischak H et al (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35:1060–1064.  https://doi.org/10.1002/elps.201300327 CrossRefPubMedGoogle Scholar
  16. 16.
    Thevenot EA, Roux A, Xu Y et al (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14:3322–3335.  https://doi.org/10.1021/acs.jproteome.5b00354 CrossRefPubMedGoogle Scholar
  17. 17.
    Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64.  https://doi.org/10.1080/01621459.1961.10482090 CrossRefGoogle Scholar
  18. 18.
    Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60.  https://doi.org/10.1214/aoms/1177730491 CrossRefGoogle Scholar
  19. 19.
    Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621.  https://doi.org/10.2307/2280779 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Alexey S. Kononikhin
    • 1
    • 2
    • 3
  • Victoria A. Sergeeva
    • 1
    • 2
    • 4
  • Anna E. Bugrova
    • 3
    • 4
  • Maria I. Indeykina
    • 1
    • 4
  • Natalia L. Starodubtseva
    • 1
    • 3
  • Vitaliy V. Chagovets
    • 3
  • Igor A. Popov
    • 1
    • 2
    • 3
  • Vladimir E. Frankevich
    • 3
  • Patrick Pedrioli
    • 5
  • Gennady T. Sukhikh
    • 3
  • Eugene N. Nikolaev
    • 1
    • 2
    • 4
    • 6
  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia
  2. 2.V.L. Talrose Institute for Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.V.I. Kulakov Research Center for Obstetrics, Gynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
  4. 4.Emanuel Institute for Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.Department of Biology, Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
  6. 6.Skolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations