MRI in the Study of Animal Models of Neurodegenerative Diseases

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Magnetic Resonance Imaging (MRI) is an important tool to study various animal models of degenerative diseases. This chapter describes routine protocols of T1-, T2-, and T2*-weighted and diffusion-weighted MRI for rodent brain and spinal cord. These protocols can be used to measure atrophy, axonal and myelin injury and changes in white matter connectivity.

Key words

Magnetic Resonance Imaging Diffusion-weighted imaging Diffusion tensor imaging Animal model of neurodegenerative diseases Brain Spinal cord In vivo MRI Ex vivo MRI High-field MRI 

Notes

Acknowledgements

N.K. thanked the Queensland Government and Australian Federal Government for funding and operational support of the 16.4T NMR spectrometer through the QLD NMR Network (QNN) and the National Imaging Facility (NIF).

References

  1. 1.
    Neumann-Haefelin T, Kastrup A, de Crespigny A, Yenari MA, Ringer T, Sun GH, Moseley ME (2000) Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 31(8):1965–1972; discussion 1972–1963CrossRefPubMedGoogle Scholar
  2. 2.
    Yan G, Dai Z, Xuan Y, Wu R (2015) Early metabolic changes following ischemia onset in rats: an in vivo diffusion-weighted imaging and 1H-magnetic resonance spectroscopy study at 7.0T. Mol Med Rep 11(6):4109–4114. https://doi.org/10.3892/mmr.2015.3283 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hutchinson EB, Schwerin SC, Radomski KL, Irfanoglu MO, Juliano SL, Pierpaoli CM (2016) Quantitative MRI and DTI abnormalities during the acute period following CCI in the ferret. Shock 46(3 Suppl 1):167–176. https://doi.org/10.1097/SHK.0000000000000659 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kharatishvili I, Immonen R, Grohn O, Pitkanen A (2007) Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain 130(Pt 12):3155–3168. https://doi.org/10.1093/brain/awm268 CrossRefPubMedGoogle Scholar
  5. 5.
    Long JA, Watts LT, Chemello J, Huang S, Shen Q, Duong TQ (2015) Multiparametric and longitudinal MRI characterization of mild traumatic brain injury in rats. J Neurotrauma 32(8):598–607. https://doi.org/10.1089/neu.2014.3563 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blomster LV, Cowin GJ, Kurniawan ND, Ruitenberg MJ (2013) Detection of endogenous iron deposits in the injured mouse spinal cord through high-resolution ex vivo and in vivo MRI. NMR Biomed 26(2):141–150. https://doi.org/10.1002/nbm.2829 CrossRefPubMedGoogle Scholar
  7. 7.
    Brennan FH, Cowin GJ, Kurniawan ND, Ruitenberg MJ (2013) Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4T) in vivo diffusion tensor imaging. Neuroimage 82:574–585. https://doi.org/10.1016/j.neuroimage.2013.06.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Brennan FH, Kurniawan ND, Vukovic J, Bartlett PF, Kasermann F, Arumugam TV, Basta M, Ruitenberg MJ (2016) IVIg attenuates complement and improves spinal cord injury outcomes in mice. Ann Clin Transl Neurol 3(7):495–511. https://doi.org/10.1002/acn3.318 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun P, Murphy RK, Gamble P, George A, Song SK, Ray WZ (2017) Diffusion assessment of cortical changes, induced by traumatic spinal cord injury. Brain Sci 7(2). https://doi.org/10.3390/brainsci7020021
  10. 10.
    Kim JH, Loy DN, Wang Q, Budde MD, Schmidt RE, Trinkaus K, Song SK (2010) Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery. J Neurotrauma 27(3):587–598. https://doi.org/10.1089/neu.2009.1063 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cowin GJ, Butler TJ, Kurniawan ND, Watson C, Wallace RH (2011) Magnetic resonance microimaging of the spinal cord in the SOD1 mouse model of amyotrophic lateral sclerosis detects motor nerve root degeneration. Neuroimage 58(1):69–74. https://doi.org/10.1016/j.neuroimage.2011.06.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Underwood C, Kurniawan ND, Butler T, Cowin GJ, Wallace RA (2011) Non-invasive diffusion tensor imaging detects white matter degeneration in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Neuroimage 55(2):455–461. https://doi.org/10.1016/j.neuroimage.2010.12.044 CrossRefPubMedGoogle Scholar
  13. 13.
    Absinta M, Sati P, Reich DS (2016) Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 12(6):358–368. https://doi.org/10.1038/nrneurol.2016.59 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hunger M, Budinger E, Zhong K, Angenstein F (2014) Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging. J Magn Reson Imaging 39(5):1126–1135. https://doi.org/10.1002/jmri.24280 CrossRefPubMedGoogle Scholar
  15. 15.
    Nathoo N, Agrawal S, Wu Y, Haylock-Jacobs S, Yong VW, Foniok T, Barnes S, Obenaus A, Dunn JF (2013) Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Mult Scler 19(6):721–731. https://doi.org/10.1177/1352458512460602 CrossRefPubMedGoogle Scholar
  16. 16.
    Tambalo S, Peruzzotti-Jametti L, Rigolio R, Fiorini S, Bontempi P, Mallucci G, Balzarotti B, Marmiroli P, Sbarbati A, Cavaletti G, Pluchino S, Marzola P (2015) Functional magnetic resonance imaging of rats with experimental autoimmune encephalomyelitis reveals brain cortex remodeling. J Neurosci 35(27):10088–10100. https://doi.org/10.1523/JNEUROSCI.0540-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Colgan N, Siow B, O’Callaghan JM, Harrison IF, Wells JA, Holmes HE, Ismail O, Richardson S, Alexander DC, Collins EC, Fisher EM, Johnson R, Schwarz AJ, Ahmed Z, O’Neill MJ, Murray TK, Zhang H, Lythgoe MF (2016) Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage 125:739–744. https://doi.org/10.1016/j.neuroimage.2015.10.043 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li L, Wang XY, Gao FB, Wang L, Xia R, Li ZX, Xing W, Tang BS, Zeng Y, Zhou GF, Zhou HY, Liao WH (2016) Magnetic resonance T2 relaxation time at 7 Tesla associated with amyloid beta pathology and age in a double-transgenic mouse model of Alzheimer’s disease. Neurosci Lett 610:92–97. https://doi.org/10.1016/j.neulet.2015.10.058 CrossRefPubMedGoogle Scholar
  19. 19.
    Wells JA, O’Callaghan JM, Holmes HE, Powell NM, Johnson RA, Siow B, Torrealdea F, Ismail O, Walker-Samuel S, Golay X, Rega M, Richardson S, Modat M, Cardoso MJ, Ourselin S, Schwarz AJ, Ahmed Z, Murray TK, O’Neill MJ, Collins EC, Colgan N, Lythgoe MF (2015) In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage 111:369–378. https://doi.org/10.1016/j.neuroimage.2015.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Antonsen BT, Jiang Y, Veraart J, Qu H, Nguyen HP, Sijbers J, von Horsten S, Johnson GA, Leergaard TB (2013) Altered diffusion tensor imaging measurements in aged transgenic Huntington disease rats. Brain Struct Funct 218(3):767–778. https://doi.org/10.1007/s00429-012-0427-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Blockx I, De Groof G, Verhoye M, Van Audekerke J, Raber K, Poot D, Sijbers J, Osmand AP, Von Horsten S, Van der Linden A (2012) Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage 59(2):957–967. https://doi.org/10.1016/j.neuroimage.2011.08.062 CrossRefPubMedGoogle Scholar
  22. 22.
    Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33(1):20–27. https://doi.org/10.1016/j.nbd.2008.09.016 CrossRefPubMedGoogle Scholar
  23. 23.
    Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2013) Voxel-based morphometry with templates and validation in a mouse model of Huntington’s disease. Magn Reson Imaging 31(9):1522–1531. https://doi.org/10.1016/j.mri.2013.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang J, Peng Q, Li Q, Jahanshad N, Hou Z, Jiang M, Masuda N, Langbehn DR, Miller MI, Mori S, Ross CA, Duan W (2010) Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. Neuroimage 49(3):2340–2351. https://doi.org/10.1016/j.neuroimage.2009.10.027 CrossRefPubMedGoogle Scholar
  25. 25.
    Yang S, Yang Z, Fischer K, Zhong K, Stadler J, Godenschweger F, Steiner J, Heinze HJ, Bernstein HG, Bogerts B, Mawrin C, Reutens DC, Speck O, Walter M (2013) Integration of ultra-high field MRI and histology for connectome based research of brain disorders. Front Neuroanat 7:31. https://doi.org/10.3389/fnana.2013.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Spencer RG, Fishbein KW, Cheng A, Mattson MP (2006) Compatibility of Gd-DTPA perfusion and histologic studies of the brain. Magn Reson Imaging 24(1):27–31. https://doi.org/10.1016/j.mri.2005.10.017 CrossRefPubMedGoogle Scholar
  27. 27.
    Webb AG, Van de Moortele PF (2016) The technological future of 7 T MRI hardware. NMR Biomed 29(9):1305–1315. https://doi.org/10.1002/nbm.3315 CrossRefPubMedGoogle Scholar
  28. 28.
    Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22(8):834–842. https://doi.org/10.1002/nbm.1396 CrossRefPubMedGoogle Scholar
  29. 29.
    Bosshard SC, Baltes C, Wyss MT, Mueggler T, Weber B, Rudin M (2010) Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain 151(3):655–663. https://doi.org/10.1016/j.pain.2010.08.025 CrossRefPubMedGoogle Scholar
  30. 30.
    Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, Zhang J (2013) In vivo high-resolution diffusion tensor imaging of the mouse brain. Neuroimage 83:18–26. https://doi.org/10.1016/j.neuroimage.2013.06.012 CrossRefPubMedGoogle Scholar
  31. 31.
    Adams S, Pacharinsak C (2015) Mouse anesthesia and analgesia. Curr Protoc Mouse Biol 5(1):51–63. https://doi.org/10.1002/9780470942390.mo140179 CrossRefPubMedGoogle Scholar
  32. 32.
    Colby LA, Morenko BJ (2004) Clinical considerations in rodent bioimaging. Comp Med 54(6):623–630PubMedGoogle Scholar
  33. 33.
    Lukasik VM, Gillies RJ (2003) Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 16(8):459–467. https://doi.org/10.1002/nbm.836 CrossRefPubMedGoogle Scholar
  34. 34.
    McConville P (2011) Small animal preparation and handling in MRI. Methods Mol Biol 771:89–113. https://doi.org/10.1007/978-1-61779-219-9_5 CrossRefPubMedGoogle Scholar
  35. 35.
    Kim JH, Song SK (2013) Diffusion tensor imaging of the mouse brainstem and cervical spinal cord. Nat Protoc 8(2):409–417CrossRefPubMedGoogle Scholar
  36. 36.
    Hedlund LW, Cofer GP, Owen SJ, Allan Johnson G (2000) MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging 18(6):753–759CrossRefPubMedGoogle Scholar
  37. 37.
    Kurniawan ND, Richards KL, Yang Z, She D, Ullmann JFP, Moldrich RX, Liu S, Yaksic JU, Leanage G, Kharatishvili I, Wimmer V, Calamante F, Galloway GJ, Petrou S, Reutens DC (2014) Visualization of mouse barrel cortex using ex-vivo track density imaging. Neuroimage 87:465–475. https://doi.org/10.1016/j.neuroimage.2013.09.030 CrossRefPubMedGoogle Scholar
  38. 38.
    Ullmann JF, Calamante F, Collin SP, Reutens DC, Kurniawan ND (2015) Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct 220(1):457–468. https://doi.org/10.1007/s00429-013-0667-7 CrossRefPubMedGoogle Scholar
  39. 39.
    Huang S, Liu C, Dai G, Kim YR, Rosen BR (2009) Manipulation of tissue contrast using contrast agents for enhanced MR microscopy in ex vivo mouse brain. Neuroimage 46(3):589–599. https://doi.org/10.1016/j.neuroimage.2009.02.027 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22(3):303–309. https://doi.org/10.1002/nbm.1324 CrossRefPubMedGoogle Scholar
  41. 41.
    D’Arceuil H, de Crespigny A (2007) The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36(1):64–68. https://doi.org/10.1016/j.neuroimage.2007.02.039 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim TH, Zollinger L, Shi XF, Rose J, Jeong EK (2009) Diffusion tensor imaging of ex vivo cervical spinal cord specimens: the immediate and long-term effects of fixation on diffusivity. Anat Rec (Hoboken) 292(2):234–241. https://doi.org/10.1002/ar.20823 CrossRefGoogle Scholar
  43. 43.
    Schwartz ED, Cooper, Chin CL, Wehrli S, Tessler A, Hackney DB (2005) Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol 26(2):390–397Google Scholar
  44. 44.
    Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: A technical review. Magn Reson Med 73(1):70–81. https://doi.org/10.1002/mrm.25198 CrossRefPubMedGoogle Scholar
  45. 45.
    Cong L, Muir ER, Chen C, Qian Y, Liu J, Biju KC, Clark RA, Li S, Duong TQ (2016) Multimodal MRI evaluation of the MitoPark mouse model of Parkinson’s disease. PLoS One 11(3):e0151884. https://doi.org/10.1371/journal.pone.0151884 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kara F, Hofling C, Rossner S, Schliebs R, Van der Linden A, Groot HJ, Alia A (2015) In vivo longitudinal monitoring of changes in the corpus callosum integrity during disease progression in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 12(10):941–950CrossRefPubMedGoogle Scholar
  47. 47.
    Rudko DA, Klassen LM, de Chickera SN, Gati JS, Dekaban GA, Menon RS (2014) Origins of R2* orientation dependence in gray and white matter. Proc Natl Acad Sci U S A 111(1):E159–E167. https://doi.org/10.1073/pnas.1306516111 CrossRefPubMedGoogle Scholar
  48. 48.
    Thiessen JD, Zhang Y, Zhang H, Wang L, Buist R, Del Bigio MR, Kong J, Li XM, Martin M (2013) Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination. NMR Biomed 26(11):1562–1581. https://doi.org/10.1002/nbm.2992 CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang J, Aggarwal M, Mori S (2012) Structural insights into the rodent CNS via diffusion tensor imaging. Trends Neurosci 35(7):412–421. https://doi.org/10.1016/j.tins.2012.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539. https://doi.org/10.1016/j.neuron.2006.08.012 CrossRefPubMedGoogle Scholar
  51. 51.
    Choi IY, Lee SP, Guilfoyle DN, Helpern JA (2003) In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 28(7):987–1001CrossRefPubMedGoogle Scholar
  52. 52.
    Robinson S, Berglass JB, Denson JL, Berkner J, Anstine CV, Winer JL, Maxwell JR, Qiu J, Yang Y, Sillerud LO, Meehan WP 3rd, Mannix R, Jantzie LL (2016) Microstructural and microglial changes after repetitive mild traumatic brain injury in mice. J Neurosci Res. https://doi.org/10.1002/jnr.23848
  53. 53.
    Ou X, Sun SW, Liang HF, Song SK, Gochberg DF (2009) Quantitative magnetization transfer measured pool-size ratio reflects optic nerve myelin content in ex vivo mice. Magn Reson Med 61(2):364–371. https://doi.org/10.1002/mrm.21850 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Perez-Torres CJ, Reynolds JO, Pautler RG (2014) Use of magnetization transfer contrast MRI to detect early molecular pathology in Alzheimer’s disease. Magn Reson Med 71(1):333–338. https://doi.org/10.1002/mrm.24665 CrossRefPubMedGoogle Scholar
  55. 55.
    Biedermann S, Fuss J, Zheng L, Sartorius A, Falfan-Melgoza C, Demirakca T, Gass P, Ende G, Weber-Fahr W (2012) In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage 61(4):1206–1212. https://doi.org/10.1016/j.neuroimage.2012.04.010 CrossRefPubMedGoogle Scholar
  56. 56.
    Sack M, Lenz JN, Jakovcevski M, Biedermann SV, Falfan-Melgoza C, Deussing J, Bielohuby M, Bidlingmaier M, Pfister F, Stalla GK, Sartorius A, Gass P, Weber-Fahr W, Fuss J, Auer MK (2016) Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav. https://doi.org/10.1007/s11682-016-9638-y
  57. 57.
    Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 74(2–3):135–147. https://doi.org/10.1016/j.schres.2004.08.019 CrossRefPubMedGoogle Scholar
  58. 58.
    Testa C, Laakso MP, Sabattoli F, Rossi R, Beltramello A, Soininen H, Frisoni GB (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. J Magn Reson Imaging 19(3):274–282. https://doi.org/10.1002/jmri.20001 CrossRefPubMedGoogle Scholar
  59. 59.
    Bammer R, Holdsworth SJ, Veldhuis WB, Skare ST (2009) New methods in diffusion-weighted and diffusion tensor imaging. Magn Reson Imaging Clin N Am 17(2):175–204. https://doi.org/10.1016/j.mric.2009.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Alomair OI, Brereton IM, Smith MT, Galloway GJ, Kurniawan ND (2015) In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla. PLoS One 10(6):e0130133. https://doi.org/10.1371/journal.pone.0130133 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kharatishvili I, Shan ZY, She DT, Foong S, Kurniawan ND, Reutens DC (2014) MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Struct Funct 219(2):683–706. https://doi.org/10.1007/s00429-013-0528-4 CrossRefPubMedGoogle Scholar
  62. 62.
    Badea A, Ali-Sharief AA, Johnson GA (2007) Morphometric analysis of the C57BL/6 J mouse brain. Neuroimage 37(3):683–693. https://doi.org/10.1016/j.neuroimage.2007.05.046 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Frey L, Lepkin A, Schickedanz A, Huber K, Brown MS, Serkova N (2014) ADC mapping and T1-weighted signal changes on post-injury MRI predict seizure susceptibility after experimental traumatic brain injury. Neurol Res 36(1):26–37. https://doi.org/10.1179/1743132813Y.0000000269 CrossRefPubMedGoogle Scholar
  64. 64.
    Leten C, Struys T, Dresselaers T, Himmelreich U (2014) In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models. J Neurooncol 119(2):297–306. https://doi.org/10.1007/s11060-014-1514-2 CrossRefPubMedGoogle Scholar
  65. 65.
    Pham M, Helluy X, Braeuninger S, Jakob P, Stoll G, Kleinschnitz C, Bendszus M (2010) Outcome of experimental stroke in C57Bl/6 and Sv/129 mice assessed by multimodal ultra-high field MRI. Exp Transl Stroke Med 2:6. https://doi.org/10.1186/2040-7378-2-6 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage 56(3):930–938. https://doi.org/10.1016/j.neuroimage.2011.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Argyridis I, Li W, Johnson GA, Liu C (2014) Quantitative magnetic susceptibility of the developing mouse brain reveals microstructural changes in the white matter. Neuroimage 88:134–142. https://doi.org/10.1016/j.neuroimage.2013.11.026 CrossRefPubMedGoogle Scholar
  68. 68.
    Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33(1):1–25. https://doi.org/10.1016/j.mri.2014.09.004 CrossRefPubMedGoogle Scholar
  69. 69.
    Klohs J, Deistung A, Schweser F, Grandjean J, Dominietto M, Waschkies C, Nitsch RM, Knuesel I, Reichenbach JR, Rudin M (2011) Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis. J Cereb Blood Flow Metab 31(12):2282–2292. https://doi.org/10.1038/jcbfm.2011.118 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556. https://doi.org/10.1002/mrm.22924 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66CrossRefGoogle Scholar
  72. 72.
    Foley LM, Hitchens TK, Barbe B, Zhang F, Ho C, Rao GR, Nemoto EM (2010) Quantitative temporal profiles of penumbra and infarction during permanent middle cerebral artery occlusion in rats. Transl Stroke Res 1(3):220–229. https://doi.org/10.1007/s12975-010-0032-6 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang S, Yao Y, Shi J, Tang X, Zhao L, Zhu W (2016) The temporal evolution of diffusional kurtosis imaging in an experimental middle cerebral artery occlusion (MCAO) model. Magn Reson Imaging 34(7):889–895. https://doi.org/10.1016/j.mri.2016.04.016 CrossRefPubMedGoogle Scholar
  74. 74.
    Douaud G, Jbabdi S, Behrens TE, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Kindlmann G, Matthews PM, Smith S (2011) DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55(3):880–890. https://doi.org/10.1016/j.neuroimage.2010.12.008 CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016CrossRefPubMedGoogle Scholar
  76. 76.
    Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132(Pt 5):1210–1220. https://doi.org/10.1093/brain/awp042 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Dyrby TB, Sogaard LV, Hall MG, Ptito M, Alexander DC (2013) Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn Reson Med 70(3):711–721. https://doi.org/10.1002/mrm.24501 CrossRefPubMedGoogle Scholar
  78. 78.
    Daducci A, Canales-Rodriguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran JP (2015) Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. Neuroimage 105:32–44. https://doi.org/10.1016/j.neuroimage.2014.10.026 CrossRefPubMedGoogle Scholar
  79. 79.
    Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z (2016) Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI. NMR Biomed 29(3):293–308. https://doi.org/10.1002/nbm.3462 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277. https://doi.org/10.1016/j.neuroimage.2008.03.036 CrossRefPubMedGoogle Scholar
  81. 81.
    Moldrich RX, Pannek K, Hoch R, Rubenstein JL, Kurniawan ND, Richards LJ (2010) Comparative mouse brain tractography of diffusion magnetic resonance imaging. Neuroimage 51(3):1027–1036. https://doi.org/10.1016/j.neuroimage.2010.03.035 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T (2016) Altered structural connectome in adolescent socially isolated mice. Neuroimage 139:259–270. https://doi.org/10.1016/j.neuroimage.2016.06.037 CrossRefPubMedGoogle Scholar
  83. 83.
    Lepore N, Brun CA, Chiang MC, Chou YY, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW, Becker JT, Thompson PM (2006) Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS. Med Image Comput Comput Assist Interv 9(Pt 1):191–198PubMedGoogle Scholar
  84. 84.
    Schwarz CG, Reid RI, Gunter JL, Senjem ML, Przybelski SA, Zuk SM, Whitwell JL, Vemuri P, Josephs KA, Kantarci K, Thompson PM, Petersen RC, Jack CR Jr, Alzheimer’s Disease Neuroimaging Initiative (2014) Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. Neuroimage 94:65–78. https://doi.org/10.1016/j.neuroimage.2014.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, Robson MD, Jones DK, Klein JC, Bartsch AJ, Behrens TE (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2(3):499–503. https://doi.org/10.1038/nprot.2007.45 CrossRefPubMedGoogle Scholar
  86. 86.
    Keihaninejad S, Zhang H, Ryan NS, Malone IB, Modat M, Cardoso MJ, Cash DM, Fox NC, Ourselin S (2013) An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease. Neuroimage 72:153–163. https://doi.org/10.1016/j.neuroimage.2013.01.044 CrossRefPubMedGoogle Scholar
  87. 87.
    DiFrancesco MW, Rasmussen JM, Yuan W, Pratt R, Dunn S, Dardzinski BJ, Holland SK (2008) Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7T using well matched scanner configurations. Med Phys 35(9):3972–3978. https://doi.org/10.1118/1.2968092 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    van de Ven RC, Hogers B, van den Maagdenberg AM, de Groot HJ, Ferrari MD, Frants RR, Poelmann RE, van der Weerd L, Kiihne SR (2007) T(1) relaxation in in vivo mouse brain at ultra-high field. Magn Reson Med 58(2):390–395. https://doi.org/10.1002/mrm.21313 CrossRefPubMedGoogle Scholar
  89. 89.
    Boretius S, Kasper L, Tammer R, Michaelis T, Frahm J (2009) MRI of cellular layers in mouse brain in vivo. Neuroimage 47(4):1252–1260. https://doi.org/10.1016/j.neuroimage.2009.05.095 CrossRefPubMedGoogle Scholar
  90. 90.
    Harrison M, O’Brien A, Adams L, Cowin G, Ruitenberg MJ, Sengul G, Watson C (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. Neuroimage 68:22–29. https://doi.org/10.1016/j.neuroimage.2012.11.048 CrossRefPubMedGoogle Scholar
  91. 91.
    Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A (2012) Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59(4):3976–3994. https://doi.org/10.1016/j.neuroimage.2011.10.045 CrossRefPubMedGoogle Scholar
  92. 92.
    Ullmann JF, Watson C, Janke AL, Kurniawan ND, Reutens DC (2013) A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78:196–203. https://doi.org/10.1016/j.neuroimage.2013.04.008 CrossRefPubMedGoogle Scholar
  93. 93.
    Ullmann JFP, Watson C, Janke AL, Kurniawan ND, Paxinos G, Reutens DC (2014) An MRI atlas of the mouse basal ganglia. Brain Struct Funct 219(4):1343–1353. https://doi.org/10.1007/s00429-013-0572-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Centre for Advanced ImagingThe University of QueenslandSt. LuciaAustralia

Personalised recommendations