In Vivo 1H Magnetic Resonance Spectroscopy

  • M. Carmen Muñoz-Hernández
  • María Luisa García-Martín
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

In vivo Magnetic Resonance Spectroscopy (MRS) allows the non-invasive detection and quantification of a number of metabolites from localized volumes within a living organism. MRS localization techniques can be divided into two main groups, single voxel and multi-voxel. Single voxel techniques provide the metabolic profile from a specific small volume, whereas multi-voxel techniques are used to obtain the spatial distribution of metabolites throughout a large volume subdivided into small contiguous voxels. This chapter describes standard protocols for the acquisition and processing of in vivo single voxel1H MRS data from the rodent brain.

Key words

Localized spectroscopy Single voxel 1H MRS Brain metabolites 

Notes

Acknowledgements

The MRI system used in this work has been funded by the Spanish Ministry of Science and Innovation (National Plan for Scientific Research, Development and Technological Innovation 2008-2011) and the European Regional Development Fund (PCT-420000-2010-3).

References

  1. 1.
    Bloch F (1946) Nuclear induction. Phys Rev 70:460–474CrossRefGoogle Scholar
  2. 2.
    Gutowsky HS, McCall DW (1951) Nuclear magnetic resonance fin structure in liquids. Phys Rev 82:748–749CrossRefGoogle Scholar
  3. 3.
    Proctor WG, FC Y (1950) The dependence of a nuclear magnetic resonance frequency. Phys Rev 77:717CrossRefGoogle Scholar
  4. 4.
    Ernst RR, Anderson WA (1966) Applications of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102CrossRefGoogle Scholar
  5. 5.
    Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248(20):7276–7278PubMedGoogle Scholar
  6. 6.
    Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252(5481):285–287CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (1998) Biochemistry detectable by MRS. In: S. Cerdán AHaFT (ed) Methodology, spectroscopy and clinical MRI, Springer, Milan, pp 7–13Google Scholar
  8. 8.
    Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326CrossRefPubMedGoogle Scholar
  9. 9.
    Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. Am J Neuroradiol 17(1):1–15PubMedGoogle Scholar
  10. 10.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348CrossRefPubMedGoogle Scholar
  11. 11.
    Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508Google Scholar
  12. 12.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45(1):37–45CrossRefPubMedGoogle Scholar
  13. 13.
    Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84(3):449–458. https://doi.org/10.3171/jns.1996.84.3.0449 CrossRefPubMedGoogle Scholar
  14. 14.
    Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. Am J Neuroradiol 16(8):1593–1603PubMedGoogle Scholar
  15. 15.
    Brandao LA, Castillo M (2013) Adult brain tumors: clinical applications of magnetic resonance spectroscopy. Neuroimaging Clin N Am 23(3):527–555. https://doi.org/10.1016/j.nic.2013.03.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Barker PB, Gillard JH, van Zijl PC, Soher BJ, Hanley DF, Agildere AM, Oppenheimer SM, Bryan RN (1994) Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology 192(3):723–732. https://doi.org/10.1148/radiology.192.3.8058940 CrossRefPubMedGoogle Scholar
  17. 17.
    Sajja BR, Wolinsky JS, Narayana PA (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 19(1):45–58. https://doi.org/10.1016/j.nic.2008.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10(4):191–247PubMedGoogle Scholar
  19. 19.
    Yerli H, Agildere AM, Ozen O, Geyik E, Atalay B, Elhan AH (2007) Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagn Interv Radiol 13(1):3–9PubMedGoogle Scholar
  20. 20.
    Hattingen E, Raab P, Franz K, Lanfermann H, Setzer M, Gerlach R, Zanella FE, Pilatus U (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50(9):759–767. https://doi.org/10.1007/s00234-008-0409-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Herholz K, Heindel W, Luyten PR, denHollander JA, Pietrzyk U, Voges J, Kugel H, Friedmann G, Heiss WD (1992) In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 31(3):319–327. https://doi.org/10.1002/ana.410310315 CrossRefPubMedGoogle Scholar
  22. 22.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24(10):1989–1998PubMedGoogle Scholar
  23. 23.
    Higuchi T, Fernandez EJ, Maudsley AA, Shimizu H, Weiner MW, Weinstein PR (1996) Mapping of lactate and N-acetyl-L-aspartate predicts infarction during acute focal ischemia: in vivo 1H magnetic resonance spectroscopy in rats. Neurosurgery 38(1):121–129. discussion 129–130CrossRefPubMedGoogle Scholar
  24. 24.
    Graham GD, Blamire AM, Howseman AM, Rothman DL, Fayad PB, Brass LM, Petroff OA, Shulman RG, Prichard JW (1992) Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke 23(3):333–340CrossRefPubMedGoogle Scholar
  25. 25.
    Woo CW, Lee BS, Kim ST, Kim KS (2010) Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: An in vivo 1H magnetic resonance spectroscopic (1H-MRS) study. Acta Radiol 51(3):344–350. https://doi.org/10.3109/02841850903515395 CrossRefPubMedGoogle Scholar
  26. 26.
    Kelley DA, Wald LL, Star-Lack JM (1999) Lactate detection at 3T: compensating J coupling effects with BASING. J Magn Reson Imaging 9(5):732–737CrossRefPubMedGoogle Scholar
  27. 27.
    Castillo M, Smith JK, Kwock L (2000) Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol 21(9):1645–1649PubMedGoogle Scholar
  28. 28.
    Sonnewald U, Schousboe A (2016) Introduction to the glutamate-glutamine cycle. Adv Neurobiol 13:1–7. https://doi.org/10.1007/978-3-319-45096-4_1 CrossRefPubMedGoogle Scholar
  29. 29.
    Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26(12):1630–1646. https://doi.org/10.1002/nbm.3045 CrossRefPubMedGoogle Scholar
  30. 30.
    Yildiz-Yesiloglu A, Ankerst DP (2006) Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 147(1):1–25. https://doi.org/10.1016/j.pscychresns.2005.12.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Hazany S, Hesselink JR, Healy JF, Imbesi SG (2007) Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas. Neuroradiology 49(2):121–127. https://doi.org/10.1007/s00234-006-0167-z CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Park I, Nelson SJ (2015) Imaging tumor metabolism using in vivo magnetic resonance spectroscopy. Cancer J 21(2):123–128. https://doi.org/10.1097/PPO.0000000000000097 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rijpkema M, Schuuring J, van der Meulen Y, van der Graaf M, Bernsen H, Boerman R, van der Kogel A, Heerschap A (2003) Characterization of oligodendrogliomas using short echo time 1H MR spectroscopic imaging. NMR Biomed 16(1):12–18. https://doi.org/10.1002/nbm.807 CrossRefPubMedGoogle Scholar
  34. 34.
    Chavarria L, Alonso J, Garcia-Martinez R, Simon-Talero M, Ventura-Cots M, Ramirez C, Torrens M, Vargas V, Rovira A, Cordoba J (2013) Brain magnetic resonance spectroscopy in episodic hepatic encephalopathy. J Cereb Blood Flow Metab 33(2):272–277. https://doi.org/10.1038/jcbfm.2012.173 CrossRefPubMedGoogle Scholar
  35. 35.
    Cordoba J, Sanpedro F, Alonso J, Rovira A (2002) 1H magnetic resonance in the study of hepatic encephalopathy in humans. Metab Brain Dis 17(4):415–429CrossRefPubMedGoogle Scholar
  36. 36.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679CrossRefPubMedGoogle Scholar
  37. 37.
    Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264CrossRefPubMedGoogle Scholar
  38. 38.
    Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4):269–286CrossRefPubMedGoogle Scholar
  39. 39.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811CrossRefPubMedGoogle Scholar
  40. 40.
    Garcia-Martin ML, Adrados M, Ortega MP, Fernandez Gonzalez I, Lopez-Larrubia P, Viano J, Garcia-Segura JM (2011) Quantitative (1) H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn Reson Med 65(2):329–339. https://doi.org/10.1002/mrm.22631 CrossRefPubMedGoogle Scholar
  41. 41.
    Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN (1993) Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed 6(1):89–94CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • M. Carmen Muñoz-Hernández
    • 1
  • María Luisa García-Martín
    • 1
    • 2
  1. 1.BIONAND, Andalusian Centre for Nanomedicine and BiotechnologyJunta de Andalucía, Universidad de MálagaMálagaSpain
  2. 2.Networking Research Center on Bioengineering, Biomaterials and NanomedicineCIBER-BBNMálagaSpain

Personalised recommendations