Skip to main content

An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome

  • Protocol
  • First Online:
Next Generation Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1712))

Abstract

Recent advances in global translatome analysis technologies enable us to understand how translational regulation of gene expression modulates cellular functions. In this chapter, we present an integrated method to measure various aspects of translatome by polysome profiling and ribosome profiling using purified B cells. We standardized our protocols to directly compare the results from these two approaches. Parallel assessment of translatome with these two approaches can generate a comprehensive picture on how translational regulation determines protein output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100(7):3889–3894. https://doi.org/10.1073/pnas.0635171100. [pii] 0635171100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, Schubert F, Preiss T, Bahler J (2007) A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26(1):145–155. https://doi.org/10.1016/j.molcel.2007.03.002. [pii] S1097-2765(07)00147-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steitz JA (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224(5223):957–964

    Article  CAS  PubMed  Google Scholar 

  4. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/Science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. https://doi.org/10.1038/nrg3645. [pii] nrg3645

    Article  CAS  PubMed  Google Scholar 

  6. Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161(7):1606–1618. https://doi.org/10.1016/j.cell.2015.05.022. [pii] S0092-8674(15)00571-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. elife 3:e01257. https://doi.org/10.7554/eLife.01257

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guydosh NR, Green R (2014) Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156(5):950–962. https://doi.org/10.1016/j.cell.2014.02.006. [pii] S0092-8674(14)00162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40(1):1–3. https://doi.org/10.1016/j.tibs.2014.10.010. [pii] S0968-0004(14)00202-3

    Article  CAS  PubMed  Google Scholar 

  10. Schott J, Reitter S, Philipp J, Haneke K, Schafer H, Stoecklin G (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 10(6):e1004368. https://doi.org/10.1371/Journal.Pgen.1004368. Artn E1004368

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schafer S, Adami E, Heinig M, Rodrigues KE, Kreuchwig F, Silhavy J, van Heesch S, Simaite D, Rajewsky N, Cuppen E, Pravenec M, Vingron M, Cook SA, Hubner N (2015) Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun 6:7200. https://doi.org/10.1038/ncomms8200. [pii] ncomms8200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu BT, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49(3):453–463. https://doi.org/10.1016/J.Molcel.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim P-H, Xiao N, Fu G, Liu W-H, Han J, Williamson JR, Xiao C (2017) Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 13 (2):e1006623. doi: https://doi.org/10.1371/journal.pgen.1006623

  14. Jin HY, Gonzalez-Martin A, Miletic A, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert R, Xiao C (2015) Transfection of microRNA mimics should be used with caution. Front Genet 6:340. https://doi.org/10.3389/fgene.2015.00340

    PubMed  PubMed Central  Google Scholar 

  15. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7(8):1534–1550. https://doi.org/10.1038/nprot.2012.086. [pii] nprot.2012.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J, Kang SG, Liu WH, Sabouri-Ghomi M, Cullen BR, Rajewsky K, Xiao C (2013) MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32(17):2377–2391. https://doi.org/10.1038/emboj.2013.178. [pii] emboj2013178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho J, Yu NK, Choi JH, Sim SE, Kang SJ, Kwak C, Lee SW, Kim JI, Choi DI, Kim VN, Kaang BK (2015) Multiple repressive mechanisms in the hippocampus during memory formation. Science 350(6256):82–87. https://doi.org/10.1126/science.aac7368. [pii] 350/6256/82

    Article  CAS  PubMed  Google Scholar 

  18. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8(5):1365–1379. https://doi.org/10.1016/j.celrep.2014.07.045. [pii] S2211-1247(14)00629-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jovan Shepherd for critical reading of manuscript. C.X. is a Pew Scholar in Biomedical Sciences. This study is supported by the PEW Charitable Trusts, Cancer Research Institute, National Institute of Health (R01AI087634, R01AI089854, RC1CA146299, R56AI110403, and R01AI121155 to C.X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, H.Y., Xiao, C. (2018). An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome. In: Head, S., Ordoukhanian, P., Salomon, D. (eds) Next Generation Sequencing. Methods in Molecular Biology, vol 1712. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7514-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7514-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7512-9

  • Online ISBN: 978-1-4939-7514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics