Skip to main content

Genotyping-by-Sequencing and Its Application to Oat Genomic Research

  • Protocol
  • First Online:
Oat

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1536))

Abstract

Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for sampling genome-wide genetic variation, performing genome-wide association mapping, and conducting genomic selection. It is a combined one-step process of SNP marker discovery and genotyping through genome reduction with restriction enzymes and SNP calling with or without a sequenced genome. This approach has the advantage of being rapid, high throughput, cost effective, and applicable to organisms without sequenced genomes. It has been increasingly applied to generate SNP genotype data for plant genetic and genomic studies. To facilitate a wider GBS application, particularly in oat genetic and genomic research, we describe the GBS approach, review the current applications of GBS in plant species, and highlight some applications of GBS to oat research. We also discuss issues in various applications of GBS and provide some perspectives in GBS research. Recent developments of bioinformatics pipelines in high-quality SNP discovery for polyploid crops will enhance the application of GBS to oat genetic and genomic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  2. Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  4. Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T et al (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garvin M, Saitoh K, Gharrett A (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Feng Q, Qian Q, Zhao Q, Wang L et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226–237

    Article  CAS  Google Scholar 

  11. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  12. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12:831–841

    Article  PubMed  Google Scholar 

  14. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  15. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J et al (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    Article  CAS  PubMed  Google Scholar 

  16. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  17. Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594

    Article  CAS  Google Scholar 

  18. Kim C, Guo H, Kong W, Chandnani R, Shuang L-S et al (2015) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  PubMed  Google Scholar 

  19. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  22. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puritz JB, Matz MV, Toonen RJ, Weber JN, Bolnick DI et al (2014) Demystifying the RAD fad. Mol Ecol 23:5937–5942

    Article  CAS  PubMed  Google Scholar 

  26. Fu YB (2014) Genetic diversity analysis of highly incomplete SNP genotype data with imputations: an empirical assessment. G3 4:891–900

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang Z (2015) Mining next generation sequencing data: how to avoid “treasure in, error out”. J Data Mining Genomics Proteomics 6:e119

    Article  Google Scholar 

  28. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    CAS  Google Scholar 

  29. Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA (2015) Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Mol Plant 8:831–846

    Article  CAS  PubMed  Google Scholar 

  30. Nevado B, Ramos-Onsins S, Perez-Enciso M (2014) Resequencing studies of non-model organisms using closely related reference genomes: optimal experimental designs and bioinformatics approaches for population genomics. Mol Ecol 23:1764–1779

    Article  CAS  PubMed  Google Scholar 

  31. Fu YB, Dong Y (2015) paSNPg: a GBS-based pipeline for protein-associated SNP discovery and genotyping in non-model species. J Proteomics Bioinform 8:190–194

    Google Scholar 

  32. Peterson GW, Dong Y, Horbach C, Fu YB (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680

    Article  CAS  Google Scholar 

  33. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  34. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  CAS  PubMed  Google Scholar 

  36. Fu YB, Peterson GW (2012) Developing genomic resources in two Linum species via 454 pyrosequencing and genomic reduction. Mol Ecol Resour 12:492–500

    Article  CAS  PubMed  Google Scholar 

  37. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW et al (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005

    Article  CAS  PubMed  Google Scholar 

  38. De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG (2013) Genotyping by sequencing (GBS): a novel, efficient and cost-effective method for cattle using next-generation sequencing. PLoS One 8:e62137

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  40. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 1:171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Orsouw NJ, Hogers RC, Janssen A, Yalcin F, Snoeijers S et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:e1172

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I et al (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. Peer J 1:e203

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stolle E, Moritz RFA (2013) RESTseq-efficient benchtop population genomics with RESTriction Fragment SEQuencing. PLoS One 8:e63960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herten K, Hestand MS, Vermeesch JR, Van Houdt JK (2015) GBSX: a toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics 16:73

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fu YB, Peterson GW, Dong Y (2016) Increasing genome sampling and improving SNP genotyping for genotyping-by-sequencing with new combinations of restriction enzymes. G3 6:845–856

    Google Scholar 

  48. Munroe DJ, Harris TJR (2010) Third-generation sequencing fireworks at Marco Island. Nat Biotechnol 28:426–428

    Article  CAS  PubMed  Google Scholar 

  49. Kagale S, Koh C, Clarke WE, Bollina V, Parkin IA et al (2015) Analysis of genotyping-by-sequencing (GBS) Data. In: Edwards D (ed) Plant bioinformatics. Methods and protocols, vol 1374, Methods in molecular biology. Springer Science + Business Media, New York, pp 269–284

    Chapter  Google Scholar 

  50. Eaton DAR (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30:1844–1849

    Article  CAS  PubMed  Google Scholar 

  51. Clevenger JP, Ozias-Akins P (2015) SWEEP: a tool for filtering high-quality SNPs in polyploid crops. G3 5:1797–1803

    Article  PubMed  PubMed Central  Google Scholar 

  52. McCormick RF, Truong SK, Mullet JE (2015) RIG: recalibration and interrelation of genomic sequence data with the GATK. G3 5:655–665

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tinker NA, Bekele WA, Hattori J (2016) Haplotag: software for haplotype-based genotyping-by-sequencing analysis. G3 6:857–863

    Google Scholar 

  54. Cooke TF, Yee MC, Muzzio M, Sockell A, Bell R et al (2016) GBStools: a unified approach for reduced representation sequencing and genotyping. PLoS Genet 12:e1005631

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gordon A (2009) FASTX-Toolkit., http://hannonlab.cshl.edu/fastx_toolkit/. Accessed 21 Jan 2016

    Google Scholar 

  56. Chikhi R, Rizk G (2013) Space-efficient and exact De Bruijn graph representation based on a Bloom filter. Algorithms Mol Biol 8:22

    Google Scholar 

  57. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Escudero M, Eaton DA, Hahn M, Hipp AL (2014) Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Mol Phylogenet Evol 79:359–367

    Article  CAS  PubMed  Google Scholar 

  62. Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM et al (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 3:1903–1926

    Article  PubMed  PubMed Central  Google Scholar 

  63. Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T et al (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8:e78037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J et al (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740

    Article  PubMed  PubMed Central  Google Scholar 

  65. Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227

    Article  PubMed  PubMed Central  Google Scholar 

  66. Thurber C, Ma J, Higgins R, Brown P (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol 14:R16

    Article  Google Scholar 

  67. Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R et al (2013) Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J 11:572–581

    Article  CAS  PubMed  Google Scholar 

  68. Raman H, Raman R, Kilian A, Detering F, Carling J et al (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 9:e101673

    Article  PubMed  PubMed Central  Google Scholar 

  69. Slavov GT, Nipper R, Robson P, Farrar K, Allison GG et al (2014) Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytol 201:1227–1239

    Article  CAS  PubMed  Google Scholar 

  70. Ramstein GP, Lipka AE, Lu F, Costich DE, Cherney JH et al (2015) Genome-wide association study based on multiple imputation with low-depth sequencing data: application to biofuel traits in reed canarygrass. G3 5:891–909

    Article  PubMed  PubMed Central  Google Scholar 

  71. Poland J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98

    Article  CAS  PubMed  Google Scholar 

  72. Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H et al (2015) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941

    PubMed  PubMed Central  Google Scholar 

  73. Li X, Wei Y, Acharya A, Hansen JL, Crawford JL et al (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:1–10

    Article  Google Scholar 

  74. Andon M, Anderson J (2008) The oatmeal-cholesterol connection: 10 years later. Am J Lifestyle Med 2:51–57

    Article  Google Scholar 

  75. Achleitner A, Tinker NA, Zechner E, Buerstmayr H (2008) Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet 117:1041–1053

    Article  CAS  PubMed  Google Scholar 

  76. Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  PubMed Central  Google Scholar 

  77. Newell M, Cook D, Tinker N, Jannink J-L (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122:623–632

    Article  CAS  PubMed  Google Scholar 

  78. Asoro FG, Newell MA, Scott MP, Beavis WD, Jannink JL (2013) Genome-wide association study for beta-glucan concentration in elite North American oat. Crop Sci 53:542–553

    Article  CAS  Google Scholar 

  79. Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA et al (2011) Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 12:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okoń S, Kowalczyk K (2012) Description of DNA analysis techniques and their application in oat (Avena L.) genome research. Acta Agrobot 65:3–10

    Google Scholar 

  81. Montilla-Bascón G, Rispail N, Sánchez-Martín J, Rubiales D, Mur LA et al (2015) Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 6:103

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tinker NA, Chao S, Lazo GR, Oliver RE, Huang YF et al (2014) A SNP genotyping array for hexaploid oat (Avena sativa L.). Plant Genome 7. doi:10.3835/plantgenome2014.03.0010

    Google Scholar 

  83. Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9:e102448

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gutierrez-Gonzalez JJ, Tu ZJ, Garvin DF (2013) Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics 14:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN et al (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS One 8:e58068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gnanesh BN, McCartney CA, Eckstein PE, Fetch JW, Menzies JG et al (2015) Genetic analysis and molecular mapping of a seedling crown rust resistance gene in oat. Theor Appl Genet 128:247–258

    Article  CAS  PubMed  Google Scholar 

  87. Chaffin AS, Huang Y-F, Smith S, Bekele WA, Babiker E et al (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement. Plant Genome. doi:10.3835/plantgenome2015.10.0102

    PubMed  Google Scholar 

  88. Klos KE, Huang Y-F, Bekele WA, Obert DE, Babiker E et al (2016) Population genomics related to adaptation in elite oat germplasm. Plant Genome. doi:10.3835/plantgenome2015.10.0103

    PubMed  Google Scholar 

  89. Fu YB, Peterson GW, Williams D, Richards KW, Mitchell Fetch J (2005) Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm. Theor Appl Genet 111:530–539

    Article  PubMed  Google Scholar 

  90. Fu YB, Williams D (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117:333–342

    Article  CAS  PubMed  Google Scholar 

  91. Sanz MJ, Jellen EN, Loarce Y, Irigoyen ML, Ferrer E, Fominaya A (2010) A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theor Appl Genet 121:1541–1552

    Article  CAS  PubMed  Google Scholar 

  92. Andrews KR, Hohenlohe PA, Miller MR, Hand BK, Seeb JE et al (2014) Trade‐offs and utility of alternative RADseq methods: reply to Puritz et al. Mol Ecol 23:5943–5946

    Article  CAS  PubMed  Google Scholar 

  93. Cohen L, Shen S, Efstathiadis E (2015) De novo transcriptome assembly. In: Brown SM (ed) Next-generation DNA sequencing informatics, 2nd edn. CSHL Press, New York, pp 155–168

    Google Scholar 

  94. Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJ et al (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7:e37565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Monson-Miller J, Sanchez-Mendez DC, Fass J, Henry IM, Tai TH et al (2012) Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing. BMC Genomics 13:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pukk L, Ahmad F, Hasan S, Kisand V, Gross R et al (2015) Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology. Mol Ecol Resour 15:1145–1152

    Article  CAS  PubMed  Google Scholar 

  97. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8:e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu X, Dou J, Mao J, Su H, Jiao W et al (2013) RADtyping: an integrated package for accurate de novo codominant and dominant RAD genotyping in mapping populations. PLoS One 8:e79960

    Article  PubMed  PubMed Central  Google Scholar 

  99. Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. Peer J 2:e431

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sovic MG, Fries AC, Gibbs HL (2015) AftrRAD: a pipeline for accurate and efficient de novo assembly of RADseq data. Mol Ecol Resour 15:1163–1171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Gregory Peterson, Yifang Tan, Sateesh Kagale, and Nicholas Tinker for their helpful comments on the early version of the manuscript. This work was supported by an A-Base research project of Agriculture and Agri-Food Canada to Y.B.F. and National Natural Science Foundation of China (Grant No. 31200481) and the China Scholarship Council Postdoctoral Abroad Grant to M.-H.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bi Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fu, YB., Yang, MH. (2017). Genotyping-by-Sequencing and Its Application to Oat Genomic Research. In: Gasparis, S. (eds) Oat. Methods in Molecular Biology, vol 1536. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6682-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6682-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6680-6

  • Online ISBN: 978-1-4939-6682-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics