3D-Video-Based Computerized Behavioral Analysis for In Vivo Neuropharmacology and Neurophysiology in Rodents

  • Jumpei Matsumoto
  • Hiroshi Nishimaru
  • Taketoshi Ono
  • Hisao NishijoEmail author
Part of the Neuromethods book series (NM, volume 121)


Video-based computerized tracking and behavioral analysis have been widely used in neuropharmacological and neurophysiological studies in rodents. Most previous systems have used 2D video recording to detect behaviors; however, 2D video cannot determine the 3D locations of animals and encounters difficulties in tracking animals when animals overlap, e.g., when mounting. To overcome these limitations, we have developed a 3D video-based analysis system for rats, named 3DTracker.

In this chapter, we explain how to setup 3DTracker in an experimental room and how the system works. We also present applications of the 3D system for analyses of both sexual behavior and a novel object-recognition test, and discuss other possible applications of the 3D system. The 3D system will provide an expanded repertoire of behavioral tests for computerized analysis and could open the door to new approaches for in vivo neuropharmacology and neurophysiology for rodents.

Key words

Behavioral neuropharmacology Neuronal recording Rats Mice 3D-video-based computerized analysis of behaviors 

Supplementary material

Movie 1

(MP4 9244 kb)

Movie 2

(MP4 1136 kb)


  1. 1.
    Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10(4):248–258CrossRefPubMedGoogle Scholar
  2. 2.
    Page DT, Kuti OJ, Sur M (2009) Computerized assessment of social approach behavior in mouse. Front Behav Neurosci 3:48. doi: 10.3389/neuro.08.048.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nguyen PT, Nakamura T, Hori E et al (2011) Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice. PLoS One 6(3):e18004. doi: 10.1371/journal.pone.0018004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Chaumont F, Coura RD, Serreau P et al (2012) Computerized video analysis of social interactions in mice. Nat Methods 9(4):410–417. doi: 10.1038/nmeth.1924 CrossRefPubMedGoogle Scholar
  5. 5.
    Nakamura T, Matsumoto J, Takamura Y et al (2015) Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice. PLoS One 10(3):e0119258. doi: 10.1371/journal.pone.0119258 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nomoto K, Lima SQ (2015) Enhanced male-evoked responses in the ventromedial hypothalamus of sexually receptive female mice. Curr Biol 25(5):589–594. doi: 10.1016/j.cub.2014.12.048 CrossRefPubMedGoogle Scholar
  7. 7.
    Hong W, Kennedy A, Burgos-Artizzu XP et al (2015) Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci U S A 112:E5351, pii: 201515982CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kobayashi T, Nishijo H, Fukuda M et al (1997) Task-dependent representations in rat hippocampal place neurons. J Neurophysiol 78(2):597–613PubMedGoogle Scholar
  9. 9.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311CrossRefPubMedGoogle Scholar
  11. 11.
    Mizumori SJY (ed) (2008) Hippocampal place fields: relevance to learning and memory. Oxford University Press, EnglandGoogle Scholar
  12. 12.
    Burgess N (2014) The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience. Neuron 84(6):1120–1125. doi: 10.1016/j.neuron.2014.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482–504CrossRefPubMedGoogle Scholar
  15. 15.
    Ohayon S, Avni O, Al T et al (2013) Automated multi-day tracking of marked mice for the analysis of social behaviour. J Neurosci Methods 219(1):10–19. doi: 10.1016/j.jneumeth.2013.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Matsumoto J, Urakawa S, Takamura Y et al (2013) A 3D-video-based computerized analysis of social and sexual interactions in rats. PLoS One 8(10):e78460. doi: 10.1371/journal.pone.0078460 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Matsumoto J, Uehara T, Urakawa S et al (2014) 3D video analysis of the novel object recognition test in rats. Behav Brain Res 272:16–24. doi: 10.1016/j.bbr.2014.06.047 CrossRefPubMedGoogle Scholar
  18. 18.
    Agmo A (1997) Male rat sexual behavior. Brain Res Brain Res Protoc 1(2):203–209CrossRefPubMedGoogle Scholar
  19. 19.
    Gorzalka BB, Morrish AC, Hill MN (2008) Endocannabinoid modulation of male rat sexual behavior. Psychopharmacology (Berl) 198:479–486CrossRefGoogle Scholar
  20. 20.
    Merari A, Barak A, Plaves M (1973) Effects of ∆1(2)-tetrahydrocannabinol on copulation in the male rat. Psychopharmacologia 28:243–246CrossRefPubMedGoogle Scholar
  21. 21.
    Gorzalka BB, Hill MN, Chang SC (2010) Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav 58:91–99CrossRefPubMedGoogle Scholar
  22. 22.
    Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59CrossRefPubMedGoogle Scholar
  23. 23.
    Berlyne DE (1950) Novelty and curiosity as determinants of exploratory behavior. Br J Psychol 41:68–80Google Scholar
  24. 24.
    Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–235CrossRefPubMedGoogle Scholar
  25. 25.
    Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259CrossRefGoogle Scholar
  26. 26.
    Molewijk HE, van der Poel AM, Olivier B (1995) The ambivalent behaviour “stretched approach posture” in the rat as a paradigm to characterize anxiolytic drugs. Psychopharmacology (Berl) 121(1):81–90CrossRefGoogle Scholar
  27. 27.
    Fonio E, Benjamini Y, Golani I (2009) Freedom of movement and the stability of its unfolding in free exploration of mice. Proc Natl Acad Sci U S A 106(50):21335–21340. doi: 10.1073/pnas.0812513106 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shimura T, Shimokochi M (1990) Involvement of the lateral mesencephalic tegmentum in copulatory behavior of male rats: neuron activity in freely moving animals. Neurosci Res 9(3):173–183CrossRefPubMedGoogle Scholar
  29. 29.
    Shimura T, Yamamoto T, Shimokochi M (1994) The medial preoptic area is involved in both sexual arousal and performance in male rats: re-evaluation of neuron activity in freely moving animals. Brain Res 640(1-2):215–222CrossRefPubMedGoogle Scholar
  30. 30.
    Matsumoto J, Urakawa S, Hori E et al (2012) Neuronal responses in the nucleus accumbens shell during sexual behavior in male rats. J Neurosci 32(5):1672–1686. doi: 10.1523/JNEUROSCI.5140-11.2012 CrossRefPubMedGoogle Scholar
  31. 31.
    Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2(11):2987–2995CrossRefPubMedGoogle Scholar
  32. 32.
    Deisseroth K (2010) Optogenetics. Nat Methods 8:26–29CrossRefPubMedGoogle Scholar
  33. 33.
    Moy SS, Nadler JJ (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13(1):4–26CrossRefPubMedGoogle Scholar
  34. 34.
    Bretas RV, Nakamura T, Matsumoto J (2015) Quantitative analysis of monkey emotional gestures by a markerless 3D motion capture. Paper presented at Neuroscience 2015, Chicago, 17–21 October 2015Google Scholar
  35. 35.
    Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans Cybernetic 43(5):1318–1334CrossRefGoogle Scholar
  36. 36.
    Ou-Yang TH, Tsai ML, Yen CT, Lin TT (2011) An infrared range camera-based approach for three-dimensional locomotion tracking and pose reconstruction in a rodent. J Neurosci Methods 201:116–123CrossRefPubMedGoogle Scholar
  37. 37.
    Lai PL, Basso DM, Fisher LC and Sheets A (2011) 3D Tracking of mouse locomotion using shape-from-silhouette techniques. In: The 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, NevadaGoogle Scholar
  38. 38.
    Goto T, Okayama T, Toyoda A (2015) Strain differences in temporal changes of nesting behaviors in C57BL/6N, DBA/2N, and their F1 hybrid mice assessed by a three-dimensional monitoring system. Behav Processes 119:86–92. doi: 10.1016/j.beproc.2015.07.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Long JD, Buzsaki G (2014) An ethological profile of the interplay between sharp wave-ripples and theta activity in CA1. Paper presented at Neuroscience 2014, Washington, DC, 15–19 November 2014Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jumpei Matsumoto
    • 1
  • Hiroshi Nishimaru
    • 1
  • Taketoshi Ono
    • 1
  • Hisao Nishijo
    • 2
    Email author
  1. 1.System Emotional ScienceUniversity of ToyamaToyamaJapan
  2. 2.System Emotional Science, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan

Personalised recommendations