Analyzing Peptide Microarray Data with the R pepStat Package

  • Gregory Imholte
  • Renan Sauteraud
  • Raphael Gottardo
Part of the Methods in Molecular Biology book series (MIMB, volume 1352)


In this chapter we demonstrate the use of R Bioconductor packages pepStat and Pviz on a set of paired peptide microarrays generated from vaccine trial data. Data import, background correction, normalization, and summarization techniques are presented. We introduce a sliding mean method for amplifying signal and reducing noise in the data, and show the value of gathering paired samples from subjects. Useful visual summaries are presented, and we introduce a simple method for setting a decision rule for subject/peptide responses that can be used with a set of control peptides or placebo subjects.

Key words

Normalization False discovery rate Data visualization Baseline correction Decision rule Sliding mean Smoothing Background correction 


  1. 1.
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Google Scholar
  2. 2.
    Gentleman R, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gottardo R, Imholte G, Sauteraud R et al. (2014) pepStat: statistical analysis of peptide microarrays. R package version 1.1.0Google Scholar
  4. 4.
    Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361(23):2209–2220CrossRefPubMedGoogle Scholar
  5. 5.
    Gottardo R et al (2013) Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 8:e75665CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
  7. 7.
    Ritchie M, Silver J, Oshlack A et al (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23(20):2700–2707CrossRefPubMedGoogle Scholar
  8. 8.
    Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9(8):e1003118. doi: 10.1371/journal.pcbi.1003118 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hellberg S, Sjöström M, Skagerberg B et al (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30(7):1126–1135CrossRefPubMedGoogle Scholar
  10. 10.
    Imholte G, Sauteraud R, Korber B et al (2013) A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. J Immunol Methods 395(1–2):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nahtman T, Jernberg A, Mahdavifar S et al (2007) Validation of peptide epitope microarray experiments and extraction of quality data. J Immunol Methods 328:1–13CrossRefPubMedGoogle Scholar
  12. 12.
    Bolstad B, Irizarry R, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185CrossRefPubMedGoogle Scholar
  13. 13.
    Sauteraud R, Jiang M, Gottardo R. Pviz (2014) peptide annotation and data visualization using Gviz. R package version 1.1.0Google Scholar
  14. 14.
    Hahne F, Durinck S, Ivanek R et al. Gviz (2012) plotting data and annotation information along genomic coordinates. R package version 1.8.0Google Scholar
  15. 15.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57(1):289–300Google Scholar
  16. 16.
    RStudio and Inc (2014) shiny: Web application framework for R. R package version

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gregory Imholte
    • 1
  • Renan Sauteraud
    • 1
  • Raphael Gottardo
    • 1
  1. 1.Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations