Advertisement

Time-Resolved FRET Strategy to Screen GPCR Ligand Library

  • Nadia Oueslati
  • Candide Hounsou
  • Abderazak Belhocine
  • Thieric Rodriguez
  • Elodie Dupuis
  • Jurriaan M. Zwier
  • Eric Trinquet
  • Jean-Philippe Pin
  • Thierry DurrouxEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1272)

Abstract

Screening chemical libraries to find specific drugs for G protein-coupled receptors is still of major interest. Indeed, because of their major roles in all physiological functions, G protein-coupled receptors remain major targets for drug development programs. Currently, interest in GPCRs as drug targets has been boosted by the discovery of biased ligands, thus allowing the development of drugs not only specific for one target but also for the specific signaling cascade expected to have the therapeutic effect. Such molecules are then expected to display fewer side effects. To reach such a goal, there is much interest in novel, efficient, simple, and direct screening assays that may help identify any drugs interacting with the target, these being then analyzed for their biased activity. Here, we present an efficient strategy to screen ligands on their binding properties. The method described is based on time-resolved FRET between a receptor and a ligand. This method has already been used to develop new assays called Tag-lite® binding assays for numerous G protein-coupled receptors, proving its broad application and its power.

Key words

Tag-lite® screening G protein-coupled receptor Fluorescent ligand Time-resolved FRET Lanthanide Terbium Self-labeling enzyme Binding experiment 

Notes

Acknowledgments

The development of the technique has been supported by the Fonds Unique Interministériel and OSEO in a collaborative program named “CELL2Lead.” Thanks are due to the Plateforme ARPÈGE of the Institut de Génomique Fonctionnelle.

References

  1. 1.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996CrossRefGoogle Scholar
  2. 2.
    Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006:re2PubMedGoogle Scholar
  3. 3.
    Pietraszewska-Bogiel A, Gadella TW (2011) FRET microscopy: from principle to routine technology in cell biology. J Microsc 241:111–118CrossRefGoogle Scholar
  4. 4.
    Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302CrossRefGoogle Scholar
  5. 5.
    Mathis G, Bazin H (2011) Stable luminescent chelates and macrocyclic compounds. In: Härmä HD, Hänninen P (eds) Lanthanide luminescence. Springer, Berlin, pp 47–88Google Scholar
  6. 6.
    Durroux T, Peter M, Turcatti G, Chollet A, Balestre MN, Barberis C, Seyer R (1999) Fluorescent pseudo-peptide linear vasopressin antagonists: design, synthesis, and applications. J Med Chem 42:1312–1319CrossRefGoogle Scholar
  7. 7.
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594CrossRefGoogle Scholar
  8. 8.
    Albizu L, Teppaz G, Seyer R, Bazin H, Ansanay H, Manning M, Mouillac B, Durroux T (2007) Toward efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J Med Chem 50:4976–4985CrossRefGoogle Scholar
  9. 9.
    Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA (2000) Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J 19:1719–1730CrossRefGoogle Scholar
  10. 10.
    Pegg AE, Dolan ME (1987) Properties and assay of mammalian O6-alkylguanine-DNA alkyltransferase. Pharmacol Ther 34:167–179CrossRefGoogle Scholar
  11. 11.
    Juillerat A, Gronemeyer T, Keppler A, Gendreizig S, Pick H, Vogel H, Johnsson K (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317CrossRefGoogle Scholar
  12. 12.
    Juillerat A, Heinis C, Sielaff I, Barnikow J, Jaccard H, Kunz B, Terskikh A, Johnsson K (2005) Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem 6:1263–1269CrossRefGoogle Scholar
  13. 13.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89CrossRefGoogle Scholar
  14. 14.
    Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959CrossRefGoogle Scholar
  15. 15.
    Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316CrossRefGoogle Scholar
  16. 16.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136CrossRefGoogle Scholar
  17. 17.
    Zhang Y, So MK, Loening AM, Yao H, Gambhir SS, Rao J (2006) HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew Chem Int Ed Engl 45:4936–4940CrossRefGoogle Scholar
  18. 18.
    Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E (2010) A fluorescent ligand-binding alternative using Tag-lite(R) technology. J Biomol Screen 15:1248–1259CrossRefGoogle Scholar
  19. 19.
    Loison S, Cottet M, Orcel H, Adihou H, Rahmeh R, Lamarque L, Trinquet E, Kellenberger E, Hibert M, Durroux T, Mouillac B, Bonnet D (2012) Selective fluorescent nonpeptidic antagonists for vasopressin V(2) GPCR: application to ligand screening and oligomerization assays. J Med Chem 55:8588–8602CrossRefGoogle Scholar
  20. 20.
    Emami-Nemini A, Roux T, Leblay M, Bourrier E, Lamarque L, Trinquet E, Lohse MJ (2013) Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc 8:1307–1320CrossRefGoogle Scholar
  21. 21.
    Middleton RJ, Kellam B (2005) Fluorophore-tagged GPCR ligands. Curr Opin Chem Biol 9:517–525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nadia Oueslati
    • 1
    • 2
    • 3
  • Candide Hounsou
    • 1
    • 2
    • 3
  • Abderazak Belhocine
    • 1
    • 2
    • 3
  • Thieric Rodriguez
    • 1
    • 2
    • 3
  • Elodie Dupuis
    • 4
  • Jurriaan M. Zwier
    • 4
  • Eric Trinquet
    • 4
  • Jean-Philippe Pin
    • 1
    • 2
    • 3
  • Thierry Durroux
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut de Génomique FonctionnelleCNRS, UMR 5203Montpellier Cedex 5France
  2. 2.INSERM, U. 661MontpellierFrance
  3. 3.Université Montpellier 1,2MontpellierFrance
  4. 4.Cisbio BioassaysCodoletFrance

Personalised recommendations