Label-Free Functional Selectivity Assays

  • Ann M. Ferrie
  • Vasiliy Goral
  • Chaoming Wang
  • Ye FangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1272)


G protein-coupled receptors (GPCRs) represent the largest class of drug targets. Ligand-directed functional selectivity or biased agonism opens new possibility for discovering GPCR drugs with better efficacy and safety profiles. However, quantification of ligand bias is challenging. Herein, we present five different label-free dynamic mass redistribution (DMR) approaches to assess ligand bias acting at the β2-adrenergic receptor (β2AR). Multiparametric analysis of the DMR agonist profiles reveals divergent pharmacology of a panel of β2AR agonists. DMR profiling using catechol as a conformational probe detects the presence of multiple conformations of the β2AR. DMR assays under microfluidics, together with chemical biology tools, discover ligand-directed desensitization of the receptor. DMR antagonist reverse assays manifest biased antagonism. DMR profiling using distinct probe-modulated cells detects the biased agonism in the context of self-referenced pharmacological activity map.

Key words

β2-adrenergic receptor Biased agonism Biased antagonism Dynamic mass redistribution G protein-coupled receptor Microfluidics Resonant waveguide grating biosensor 


  1. 1.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedGoogle Scholar
  2. 2.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996PubMedGoogle Scholar
  3. 3.
    Mailman RB (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 8:390–396Google Scholar
  4. 4.
    Zhou L, Bohn LM (2014) Functional selectivity of GPCR signaling in animals. Curr Opin Cell Biol 27:102–108PubMedGoogle Scholar
  5. 5.
    Kenakin T (2012) The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Tox 13:3Google Scholar
  6. 6.
    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386PubMedPubMedCentralGoogle Scholar
  8. 8.
    Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G (2003) β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein coupled receptors. Proc Natl Acad Sci U S A 100:11406–11411PubMedPubMedCentralGoogle Scholar
  9. 9.
    Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584PubMedGoogle Scholar
  10. 10.
    Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci U S A 104:16657–16662PubMedPubMedCentralGoogle Scholar
  11. 11.
    Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ (2008) β-Arrestin-biased agonism at the β2-adrenergic receptor. J Biol Chem 283:5669–5676PubMedGoogle Scholar
  12. 12.
    Kahsai A, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ (2011) Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat Chem Biol 7:692–700PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zocher M, Fung JJ, Kobilka BK, Müller DJ (2012) Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human β2 adrenergic receptor. Structure 20:1391–1402PubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K (2012) Biased signalling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kolinski M, Plazinska A, Jozwiak K (2012) Recent progress in understanding of structure, ligand interactions and the mechanism of activation of the β2-adrenergic receptor. Curr Med Chem 19:1155–1163PubMedGoogle Scholar
  16. 16.
    Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ (2010) Ligand-directed signalling at β2-adrenoceptors. Br J Pharmacol 159:1022–1038PubMedPubMedCentralGoogle Scholar
  17. 17.
    Patel CB, Noor N, Rockman HA (2010) Functional selectivity in adrenergic and angiotensin signaling systems. Mol Pharmacol 78:983–992PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216PubMedGoogle Scholar
  19. 19.
    Galandrin S, Oligny-Longpre G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 8:423–430Google Scholar
  20. 20.
    Li B, Wang C, Zhou Z, Zhao J, Pei G (2013) β-Arrestin-1 directly interacts with Gαs and regulates its function. FEBS Lett 587:410–416PubMedGoogle Scholar
  21. 21.
    Saulière A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, Altié MF, Seguelas MH, Pathak A, Hansen JL, Sénard JM, Galés C (2012) Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol 8:622–630PubMedGoogle Scholar
  22. 22.
    Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ferrie AM, Wang C, Deng H, Fang Y (2013) Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrerengic receptor. Integr Biol 5:1253–1261Google Scholar
  24. 24.
    Fang Y, Li G, Peng J (2005) Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett 579:6365–6374PubMedGoogle Scholar
  25. 25.
    Tran E, Fang Y (2008) Duplexed label-free G protein-coupled receptor assays for high-throughput screening. J Biomol Screen 13:975–985PubMedGoogle Scholar
  26. 26.
    Dodgson K, Gedge L, Murray DC, Coldwell M (2009) A 100K well screen for a muscarinic receptor using the Epic label-free system: a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct Res 29:163–172PubMedGoogle Scholar
  27. 27.
    Schröder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Müller A, Blättermann S, Mohr-Andrä M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28:943–949PubMedGoogle Scholar
  28. 28.
    Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Fang Y, Benkovic SJ (2011) G protein-coupled receptor signaling regulates the dynamics of a metabolic multienzyme complex. Nat Chem Biol 7:909–915PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 67:69–81PubMedGoogle Scholar
  30. 30.
    Fang Y (2014) Label-free drug discovery. Front Pharmacol 5:52PubMedPubMedCentralGoogle Scholar
  31. 31.
    Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502PubMedPubMedCentralGoogle Scholar
  32. 32.
    Goral V, Jin Y, Sun H, Ferrie AM, Wu Q, Fang Y (2011) Agonist-directed desensitization of the β2-adrenergic receptor. PLoS One 6:e19282PubMedPubMedCentralGoogle Scholar
  33. 33.
    Goral V, Wu Q, Sun H, Fang Y (2011) Label-free optical biosensor with microfluidics for sensing ligand-directed functional selectivity on trafficking of thrombin receptor. FEBS Lett 585:1054–1060PubMedGoogle Scholar
  34. 34.
    Zaytseva N, Miller W, Goral V, Hepburn J, Fang Y (2011) Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl Phys Lett 98:163703Google Scholar
  35. 35.
    Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:e83PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fang Y, Ferrie AM (2008) Label-free optical biosensor for ligand-directed functional selectivity acting on β2-adrenoceptor in living cells. FEBS Lett 582:558–564PubMedGoogle Scholar
  37. 37.
    Fang Y (2010) Label-free receptor assays. Drug Discov Today Technol 7:e5–e11Google Scholar
  38. 38.
    Fang Y, Ferrie AM, Tran E (2009) Resonant waveguide grating biosensor for whole cell GPCR assays. Methods Mol Biol 552:239–252PubMedGoogle Scholar
  39. 39.
    Guo D, Mulder-Krieger T, Ijzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166:1846–1959PubMedPubMedCentralGoogle Scholar
  40. 40.
    Deng H, Sun H, Fang Y (2013) Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J Pharmacol Toxicol Methods 68:323–333PubMedGoogle Scholar
  41. 41.
    Kenakin TP, Morgan PH (1989) The theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Mol Pharmacol 35:214–222PubMedGoogle Scholar
  42. 42.
    Swaminath G, Deup X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B (2005) Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280:22165–22171PubMedGoogle Scholar
  43. 43.
    Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228PubMedGoogle Scholar
  44. 44.
    Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538PubMedGoogle Scholar
  45. 45.
    Ferrie AM, Sun H, Fang Y (2011) Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor. Sci Rep 1:33PubMedPubMedCentralGoogle Scholar
  46. 46.
    Morse M, Tran E, Levension RL, Fang Y (2011) Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free on-target pharmacology. PLoS One 6:e25643PubMedPubMedCentralGoogle Scholar
  47. 47.
    Morse M, Sun H, Tran E, Levenson RL, Fang Y (2013) Label-free integrative pharmacology ontarget of opioid ligands at the opioid receptor family. BMC Pharmacol Toxicol 14:17PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ferrie AM, Sun H, Zaytseva N, Fang Y (2014) Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β2-adrenergic receptors. Sci Rep 4:3828PubMedPubMedCentralGoogle Scholar
  49. 49.
    Deng H, Wang C, Fang Y (2013) Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv 3:10370–10378Google Scholar
  50. 50.
    Ferrie AM, Wu Q, Fang Y (2010) Resonant waveguide grating imager for live cell sensing. Appl Phys Lett 97:223704PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ferrie AM, Deichmann OD, Wu Q, Fang Y (2012) High resolution resonant waveguide grating imager for cell cluster analysis under physiological condition. Appl Phys Lett 100:223701Google Scholar
  52. 52.
    Tran E, Sun H, Fang Y (2012) Dynamic mass redistribution assays decodes surface influence on signaling of endogenous purinergic receptors. Assay Drug Dev Technol 10:37–45PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ann M. Ferrie
    • 1
  • Vasiliy Goral
    • 1
  • Chaoming Wang
    • 1
    • 2
  • Ye Fang
    • 1
    Email author
  1. 1.Biochemical Technologies, Science and Technology DivisionCorning IncorporatedCorningUSA
  2. 2.Department of Mechanical, Materials and Aerospace Engineering, NanoScience Technology CenterUniversity of Central FloridaOrlandoUSA

Personalised recommendations