Advertisement

Cell Sheet Technology for Cardiac Tissue Engineering

  • Yuji Haraguchi
  • Tatsuya Shimizu
  • Katsuhisa Matsuura
  • Hidekazu Sekine
  • Nobuyuki Tanaka
  • Kenjiro Tadakuma
  • Masayuki Yamato
  • Makoto Kaneko
  • Teruo OkanoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1181)

Abstract

In this chapter, we describe the methods for the fabrication and transfer/transplantation of 3D tissues by using cell sheet technology for cardiac tissue regeneration. A temperature-responsive culture surface can be fabricated by grafting a temperature-responsive polymer, poly(N-isopropylacrylamide), onto a polystyrene cell culture surface. Cells cultured confluently on such a culture surface can be recovered as an intact cell sheet, and functional three-dimensional (3D) tissues can then be easily fabricated by layering the recovered cell sheets without any scaffolds or complicated manipulation. Cardiac cell sheets, myoblast sheets, mesenchymal stem cell sheets, cardiac progenitor cell sheets, etc., which are prepared from temperature-responsive culture surfaces, can be easily transplanted onto heart tissues of animal models, and those cell sheet constructs enhance the cell transplant efficiency, resulting in the induction of effective therapy.

Key words

Cardiomyocytes Cell sheet engineering Extracellular matrix Temperature-responsive culture surface Three-dimensional tissue Tissue engineering Transplantation 

Notes

Acknowledgements

This work was supported by grants from Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology “Cell Sheet Tissue Engineering Center (CSTEC)” from the Ministry of Education, Culture, Sports Science, and Technology (MEXT), Japan, and JSPS through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).

Supplementary material

Supplementary Movie 1 (MPEG 19,447 KB)

Supplementary Movie 2 (WMV 22,493 KB)

Supplementary Movie 3 (MPEG 3,391 KB)

Supplementary Movie 4 (MPEG 1,049 KB)

Supplementary Movie 5 (MPEG 3,307 KB)

References

  1. 1.
    Menasché P (2008) Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 45:545–553CrossRefGoogle Scholar
  2. 2.
    Alaiti MA, Ishikawa M, Costa MA (2010) Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. Transl Res 156:112–129CrossRefGoogle Scholar
  3. 3.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857CrossRefGoogle Scholar
  4. 4.
    Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904CrossRefGoogle Scholar
  5. 5.
    Ptaszek LM, Mansour M, Ruskin JN, Chien KR (2012) Towards regenerative therapy for cardiac disease. Lancet 379:933–942CrossRefGoogle Scholar
  6. 6.
    Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921CrossRefGoogle Scholar
  7. 7.
    Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 18:1153–1155Google Scholar
  8. 8.
    Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202CrossRefGoogle Scholar
  9. 9.
    Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM (1999) Survival and Function of Bioengineered Cardiac Grafts. Circulation 100:II63–II69CrossRefGoogle Scholar
  10. 10.
    Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102:III56–III61CrossRefGoogle Scholar
  11. 11.
    Zimmermann WH, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106:I151–I157Google Scholar
  12. 12.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221CrossRefGoogle Scholar
  13. 13.
    Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16:927–934CrossRefGoogle Scholar
  14. 14.
    Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A (2008) Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85:901–908CrossRefGoogle Scholar
  15. 15.
    Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surface: control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11:571–576CrossRefGoogle Scholar
  16. 16.
    Okano T, Yamada H, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251CrossRefGoogle Scholar
  17. 17.
    Matsuda N, Shimizu T, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19:3089–3099CrossRefGoogle Scholar
  18. 18.
    Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043CrossRefGoogle Scholar
  19. 19.
    Hannachi IE, Yamato M, Okano T (2010) Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med 267:54–70CrossRefGoogle Scholar
  20. 20.
    Haraguchi Y, Shimizu T, Yamato M, Okano T (2011) Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract 2011:845170Google Scholar
  21. 21.
    Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surface. J Biomed Mater Res 45:355–362CrossRefGoogle Scholar
  22. 22.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385CrossRefGoogle Scholar
  23. 23.
    Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885CrossRefGoogle Scholar
  24. 24.
    Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48CrossRefGoogle Scholar
  25. 25.
    Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24:2309–2316CrossRefGoogle Scholar
  26. 26.
    Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12:499–507CrossRefGoogle Scholar
  27. 27.
    Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27:4765–4774CrossRefGoogle Scholar
  28. 28.
    Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H (2005) Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 130:1333–1341CrossRefGoogle Scholar
  29. 29.
    Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H, Sawa Y (2006) Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 132:918–924CrossRefGoogle Scholar
  30. 30.
    Kondoh H, Sawa Y, Miyagawa S, Sakakida-Kitagawa S, Memon IA, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H (2006) Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters. Cardiovasc Res 69:466–475CrossRefGoogle Scholar
  31. 31.
    Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465CrossRefGoogle Scholar
  32. 32.
    Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T (2008) Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:S145–S152CrossRefGoogle Scholar
  33. 33.
    Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 26:1695–1704CrossRefGoogle Scholar
  34. 34.
    Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, Shimizu T, Okano T, Kasanuki H, Hagiwara N, Komuro I (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119:2204–2217Google Scholar
  35. 35.
    Sekiya N, Matsumiya G, Miyagawa S, Saito A, Shimizu T, Okano T, Kawaguchi N, Matsuura N, Sawa Y (2009) Layered implantation of myoblast sheets attenuates adverse cardiac remodeling of the infarcted heart. J Thorac Cardiovasc Surg 138:985–993CrossRefGoogle Scholar
  36. 36.
    Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, Kawaguchi N, Teramoto N, Matsuura N, Iida H, Shimizu T, Okano T, Sawa Y (2010) Impaired myocardium regeneration with skeletal cell sheets—a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90:364–372CrossRefGoogle Scholar
  37. 37.
    Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng Part A 17:2973–2980CrossRefGoogle Scholar
  38. 38.
    Imanishi Y, Miyagawa S, Maeda N, Fukushima S, Kitagawa-Sakakida S, Daimon T, Hirata A, Shimizu T, Okano T, Shimomura I, Sawa Y (2011) Induced adipocyte cell-sheet ameliorates cardiac dysfunction in a mouse myocardial infarction model: a novel drug delivery system for heart failure. Circulation 124:S10–S17CrossRefGoogle Scholar
  39. 39.
    Shudo Y, Miyagawa S, Fukushima S, Saito A, Shimizu T, Okano T, Sawa Y (2011) Novel regenerative therapy using cell-sheet covered with omentum flap delivers a huge number of cells in a porcine myocardial infarction model. J Thorac Cardiovasc Surg 141:1188–1196CrossRefGoogle Scholar
  40. 40.
    Kamata S, Miyagawa S, Fukushima S, Nakatani S, Kawamoto A, Saito A, Harada A, Shimizu T, Daimon T, Okano T, Asahara T, Sawa Y. (in press) Improvement of cardiac stem cell-sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function. Cell TransplantGoogle Scholar
  41. 41.
    Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42:181–184CrossRefGoogle Scholar
  42. 42.
    Matsuura K, Masuda S, Haraguchi Y, Yasuda N, Shimizu T, Hagiwara N, Zandstra PW, Okano T (2011) Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials 32:7355–7362CrossRefGoogle Scholar
  43. 43.
    Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T (2012) Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun 425:321–327CrossRefGoogle Scholar
  44. 44.
    Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, Marui A, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2012) Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cell 30:1196–1205CrossRefGoogle Scholar
  45. 45.
    Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37CrossRefGoogle Scholar
  46. 46.
    Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (in press) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen MedGoogle Scholar
  47. 47.
    Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858CrossRefGoogle Scholar
  48. 48.
    Shioyama T, Haraguchi Y, Muragaki Y, Shimizu T, Okano T (2013) New isolation system for collecting living cells from tissue. J Biosci Bioeng 115:100–103CrossRefGoogle Scholar
  49. 49.
    Matsuura K, Wada H, Nagai T, Iijima Y, Minamino T, Sano M, Akazawa H, Molkentin JD, Kasanuki H, Komuro I (2004) Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol 167:351–363CrossRefGoogle Scholar
  50. 50.
    Haraguchi Y, Sekine W, Shimizu T, Yamato M, Miyoshi S, Umezawa A, Okano T (2010) Development of a new assay system for evaluating the permeability of various substances through three-dimensional tissue. Tissue Eng Part C Methods 16:685–692CrossRefGoogle Scholar
  51. 51.
    Sekine W, Haraguchi Y, Shimizu T, Umezawa A, Okano T (2011) Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. J Biochip Tissue Chip S2:001Google Scholar
  52. 52.
    Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T, Onuki T (2008) Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg 34:864–869CrossRefGoogle Scholar
  53. 53.
    Tadakuma K, Tanaka N, Haraguchi Y, Higashimori M, Kaneko M, Shimizu T, Yamato M, Okano T (2013) Development of a simple device for transfer/transplantation of living cell sheets rapidly and completely without cell damage. Biomaterials 34:9018–9025Google Scholar
  54. 54.
    Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K (2006) Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55:1704–1710CrossRefGoogle Scholar
  55. 55.
    Kanzaki M, Yamato M, Hatakeyama H, Kohno C, Yang J, Umemoto T, Kikuchi A, Okano T, Onuki T (2006) Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng 12:1275–1283CrossRefGoogle Scholar
  56. 56.
    Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946CrossRefGoogle Scholar
  57. 57.
    Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T, Ishikawa I (2009) Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30:2716–2723CrossRefGoogle Scholar
  58. 58.
    Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, Okano T (2009) Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30:5943–5949CrossRefGoogle Scholar
  59. 59.
    Elloumi HI, Itoga K, Kumashiro Y, Kobayashi J, Yamato M, Okano T (2009) Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 30:5427–5432CrossRefGoogle Scholar
  60. 60.
    Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T (2010) Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31:3903–3909CrossRefGoogle Scholar
  61. 61.
    Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, Okano T (2010) Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31:1646–1654CrossRefGoogle Scholar
  62. 62.
    Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458CrossRefGoogle Scholar
  63. 63.
    Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuji Haraguchi
    • 1
  • Tatsuya Shimizu
    • 1
  • Katsuhisa Matsuura
    • 1
  • Hidekazu Sekine
    • 1
  • Nobuyuki Tanaka
    • 1
  • Kenjiro Tadakuma
    • 2
  • Masayuki Yamato
    • 1
  • Makoto Kaneko
    • 2
  • Teruo Okano
    • 1
    Email author
  1. 1.Institute of Advanced Biomedical Engineering and Science, TWInsTokyo Women’s Medical UniversityShinjuku-kuJapan
  2. 2.Department of Mechanical EngineeringGraduate School of Engineering, Osaka UniversitySuitaJapan

Personalised recommendations