Constructing Synthetic Microbial Communities to Explore the Ecology and Evolution of Symbiosis

  • Adam James Waite
  • Wenying Shou
Part of the Methods in Molecular Biology book series (MIMB, volume 1151)


Synthetically engineered microbial communities based on model organisms provide a simplified model of their naturally occurring counterparts while still retaining essential features of living organisms. The degree of control afforded by this approach has been critical in understanding how similar types of natural communities might have persisted and evolved. Here, we first discuss important considerations when designing a synthetically engineered system. Then, we describe the steps required to create a two-partner cooperative system based on the yeast Saccharomyces cerevisiae.

Key words

Evolution Ecology Mutualism Cooperation Synthetic biology S. cerevisiae 



Work in the W.S. group is supported by the W. M. Keck Foundation and the National Institutes of Health (Grant 1 DP2OD006498-01).


  1. 1.
    Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464. doi: 10.1016/j.copbio.2011.01.008 CrossRefGoogle Scholar
  2. 2.
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270. doi: 10.1016/j.cell.2012.01.035 CrossRefGoogle Scholar
  3. 3.
    Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. doi: 10.4248/IJOS11026 CrossRefGoogle Scholar
  4. 4.
    Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73:712–729. doi: 10.1128/MMBR.00027-09 CrossRefGoogle Scholar
  5. 5.
    Momeni B, Chen C-C, Hillesland K et al (2011) Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol Life Sci 68:1353–1368. doi: 10.1007/s00018-011-0649-y CrossRefGoogle Scholar
  6. 6.
    Hagen DC, McCaffrey G, Sprague GF (1986) Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci 83:1418–1422CrossRefGoogle Scholar
  7. 7.
    SGD project Saccharomyces Genome Database. In: SGD. Accessed 8 Mar 2010
  8. 8.
    Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE (2009) Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288C Strains. Genetics 183:365–383. doi: 10.1534/genetics.109.104497 CrossRefGoogle Scholar
  9. 9.
    Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137:1247–1258. doi: 10.1016/j.cell.2009.04.014 CrossRefGoogle Scholar
  10. 10.
    Yvert G, Brem RB, Whittle J et al (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64. doi: 10.1038/ng1222 CrossRefGoogle Scholar
  11. 11.
    Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in <I>Saccharomyces cerevisiae</I> Yeast 15:1541–1553. doi:10.1002/(SICI)1097-0061(199910) 15:14<1541 ::AID-YEA476>3.0.CO;2-KCrossRefGoogle Scholar
  12. 12.
    Nakazawa N, Iwano K (2004) Efficient selection of hybrids by protoplast fusion using drug resistance markers and reporter genes in Saccharomyces cerevisiae. J Biosci Bioeng 98:353–358. doi: 10.1016/S1389-1723(04)00295-6 CrossRefGoogle Scholar
  13. 13.
    Hentges P, Van Driessche B, Tafforeau L et al (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019. doi: 10.1002/yea.1291 CrossRefGoogle Scholar
  14. 14.
    Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887. doi: 10.1039/b901966a CrossRefGoogle Scholar
  15. 15.
    Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852. doi: 10.1039/b913033k CrossRefGoogle Scholar
  16. 16.
    Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670. doi: 10.1002/yea.1130 CrossRefGoogle Scholar
  17. 17.
    Güldener U, Heck S, Fiedler T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524. doi: 10.1093/nar/24.13.2519 CrossRefGoogle Scholar
  18. 18.
    Güeldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23–e23. doi: 10.1093/nar/30.6.e23 CrossRefGoogle Scholar
  19. 19.
    Guthrie C, Fink GR (2002) Guide to yeast genetics and molecular and cell biology, part B, vol 350, 1st edn. Academic, New YorkGoogle Scholar
  20. 20.
    Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175CrossRefGoogle Scholar
  21. 21.
    Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882. doi: 10.1073/pnas.0610575104 CrossRefGoogle Scholar
  22. 22.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  23. 23.
    Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50:325–328. doi: 10.2144/000113672 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUSA
  2. 2.Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations