Virus-Induced Gene Silencing in Diploid and Tetraploid Potato Species

  • Jinping Zhao
  • Haolang Jiang
  • Guanyu Wang
  • Zonghua Wang
  • Jingao Dong
  • Junqi SongEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2172)


Potato is the world’s fourth largest food crop and a vegetatively propagated model polyploid plant. To facilitate genomic studies in potato, here we describe detailed protocols to silence genes in both diploid potato Solanum bulbocastanum and tetraploid potato cultivars such as Maris Bard, Arran Pilot, Ancilla, and Serrana using tobacco rattle virus (TRV)- or potato virus X (PVX)-induced gene silencing (VIGS) system, respectively. The established VIGS system represents an efficient and powerful approach for functional analysis of genes involved in growth, development, metabolism, and responses to biotic and abiotic stresses in potato.

Key words

Virus-induced gene silencing (VIGS) Diploid potato Tetraploid potato Tobacco rattle virus (TRV) Potato virus X (PVX) Solanum bulbocastanum Solanum tuberosum 



We thank the NRSP-6 US Potato Genebank for providing the wild and cultivated potato species and Dr. Yule Liu from Tsinghua University for providing the TRV1 and TRV2e vectors. This work was supported by a startup fund from the Texas A&M AgriLife Research and the Hatch Project TEX0-1-9675 from USDA National Institute of Food and Agriculture to JS, the scholarship 201707877008 from China Scholarship Council to HJ, and the scholarship 201708130105 from China Scholarship Council to GW.


  1. 1.
    Barrell PJ, Meiyalaghan S, Jacobs JM et al (2013) Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J 11(8):907–920CrossRefGoogle Scholar
  2. 2.
    Leisner CP, Hamilton JP, Crisovan E et al (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94(3):562–570CrossRefGoogle Scholar
  3. 3.
    Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27(4):954–968CrossRefGoogle Scholar
  4. 4.
    The Potato Genome Sequencing Consortium, Xu X, Pan S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189Google Scholar
  5. 5.
    Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17(8):449–459CrossRefGoogle Scholar
  6. 6.
    Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113CrossRefGoogle Scholar
  7. 7.
    Brigneti G, Martín-Hernández AM, Jin H et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39(2):264–272CrossRefGoogle Scholar
  8. 8.
    Faivre-Rampant O, Gilroy EM, Hrubikova K et al (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134(4):1308–1316CrossRefGoogle Scholar
  9. 9.
    Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9(7):797–806CrossRefGoogle Scholar
  10. 10.
    Dobnik D, Lazar A, Stare T et al (2016) Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods 12(1):29CrossRefGoogle Scholar
  11. 11.
    Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245CrossRefGoogle Scholar
  12. 12.
    MacFarlane SA, Vassilakos N, Brown DJ (1999) Similarities in the genome organization of tobacco rattle virus and pea early-browning virus isolates that are transmitted by the same vector nematode. J Gen Virol 80(1):273–276CrossRefGoogle Scholar
  13. 13.
    Huisman MJ, Linthorst HJM, Bol JF et al (1988) The complete nucleotide sequence of Potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol 69(8):1789–1798CrossRefGoogle Scholar
  14. 14.
    Beck DL, Guilford PJ, Voot DM et al (1991) Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183(2):695–702CrossRefGoogle Scholar
  15. 15.
    Angell SM, Davies C, Baulcombe DC (1996) Cell-to-cell movement of Potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216(1):197–201CrossRefGoogle Scholar
  16. 16.
    Chapman S, Kavanagh T, Baulcombe D (1992) Potato virus X as a vector for gene expression in plants. Plant J 2(4):549–557PubMedGoogle Scholar
  17. 17.
    Brunt AA (1996) Plant viruses online: descriptions and lists from the VIDE database. University of Idaho, Moscow, IDGoogle Scholar
  18. 18.
    Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10(6):937–946CrossRefGoogle Scholar
  19. 19.
    Song J, Bradeen JM, Naess SK et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100(16):9128–9133CrossRefGoogle Scholar
  20. 20.
    Brown CR, Mojtahedi H, Zhang L-H et al (2009) Independent resistant reactions expressed in root and tuber of potato breeding lines with introgressed resistance to Meloidogyne chitwoodi. Phytopathology 99(9):1085–1089CrossRefGoogle Scholar
  21. 21.
    Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, LondonGoogle Scholar
  22. 22.
    Park T-H, Gros J, Sikkema A et al (2005) The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant-Microbe Interact 18(7):722–729CrossRefGoogle Scholar
  23. 23.
    van der Vossen EAG, Gros J, Sikkema A et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44(2):208–222CrossRefGoogle Scholar
  24. 24.
    Liu Z, Halterman D (2006) Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Physiol Mol Plant Pathol 69(4–6):230–239CrossRefGoogle Scholar
  25. 25.
    Vleeshouwers VG, Rietman H, Krenek P et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3(8):e2875CrossRefGoogle Scholar
  26. 26.
    van der Vossen E, Sikkema A, Hekkert B et al (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36(6):867–882CrossRefGoogle Scholar
  27. 27.
    Zhao J, Liu Q, Hu P et al (2016) An efficient Potato virus X-based microRNA silencing in Nicotiana benthamiana. Sci Rep 6:20573PubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu Y, Schiff M, Marathe R et al (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429CrossRefGoogle Scholar
  29. 29.
    Sha A, Zhao J, Yin K et al (2014) Virus-based microRNA silencing in plants. Plant Physiol 164(1):36–47CrossRefGoogle Scholar
  30. 30.
    Zhao J, Liu Y (2016) Virus-based MicroRNA silencing. Bio-protocol 6(2):e1714CrossRefGoogle Scholar
  31. 31.
    Page JE, Hause G, Raschke M et al (2004) Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol 134(4):1401–1413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Jinping Zhao
    • 1
  • Haolang Jiang
    • 1
    • 2
  • Guanyu Wang
    • 3
  • Zonghua Wang
    • 2
    • 4
  • Jingao Dong
    • 3
  • Junqi Song
    • 1
    • 5
    Email author
  1. 1.Texas A&M AgriLife Research Center at DallasTexas A&M University SystemDallasUSA
  2. 2.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Mycotoxin and Molecular Plant Pathology Laboratory, College of Life SciencesHebei Agricultural UniversityBaodingChina
  4. 4.Institute of OceanographyMinjiang UniversityFuzhouChina
  5. 5.Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations