Advertisement

Virus-Induced Gene Silencing in Rose Flowers

  • Huijun Yan
  • Zhao Zhang
  • Jean-Louis MagnardEmail author
  • Benoît Boachon
  • Sylvie Baudino
  • Kaixue Tang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2172)

Abstract

Virus-induced gene silencing (VIGS) is a favorable method to study gene function by posttranscriptional gene silencing in plants. Here we describe a methodology of graft-accelerated VIGS in rose aimed at obtaining posttranscriptional gene silencing in the flower. The resulting phenotype can be observed within 5–6 weeks post infiltration. By using this method, we successfully silenced the expression of several genes involved in processes such as scent production, petal coloration, or flower architecture. We showed that graft-accelerated VIGS was faster, more efficient, and more convenient than conventional methods previously developed in rose such as agroinfiltration of young plantlets and in vitro cultured tissues or seeds.

Key words

VIGS Rose Vacuum infiltration Graft Posttranscriptional gene silencing 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants numbers 31660579, 31872144, and 31501791). This research was funded in part by the Beijing Natural Science Foundation (6162017).

References

  1. 1.
    Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665CrossRefGoogle Scholar
  2. 2.
    Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N (2014) TRV–GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65:311–322CrossRefGoogle Scholar
  3. 3.
    Liu Y, Schiff M, Dinesh-Kumar S (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786CrossRefGoogle Scholar
  4. 4.
    Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J39:734–746Google Scholar
  5. 5.
    Liu H, Fu D, Zhu B, Yan H, Shen X, Zuo J, Zhu Y, Luo Y (2012) Virus-induced gene silencing in eggplant (Solanum melongena). J Integr Plant Biol 54:422–429CrossRefGoogle Scholar
  6. 6.
    Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316CrossRefGoogle Scholar
  7. 7.
    Zhong X, Yuan X, Wu Z, Khan MA, Chen J, Li X, Gong B, Zhao Y, Wu J, Wu C (2014) Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus. Plant Cell Rep 33:301–312CrossRefGoogle Scholar
  8. 8.
    Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999–4009CrossRefGoogle Scholar
  9. 9.
    Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308CrossRefGoogle Scholar
  10. 10.
    Zhu HL, Zhu BZ, Shao Y, Wang XG, Lin XJ, Xie YH, Li YC, Gao HY, Luo YB (2006) Tomato fruit development and ripening are altered by the silencing of LeEIN2 gene. J Integr Plant Biol 48:1478–1485CrossRefGoogle Scholar
  11. 11.
    Chen J, Jiang C, Gookin T, Hunter D, Clark D, Reid M (2004) Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol 55:521–530CrossRefGoogle Scholar
  12. 12.
    Gao Y, Liu C, Li X, Xu H, Liang Y, Ma N, Fei Z, Gao J, Jiang CZ, Ma C (2016) Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Front Plant Sci 7:1375PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T 2/S ribonuclease superfamily. Mol Gen Genet 250:547–557PubMedGoogle Scholar
  14. 14.
    Serge G (2001) Rose breeding technologies. Acta Hortic 547:23–26Google Scholar
  15. 15.
    Dai F, Zhang C, Jiang X, Kang M, Yin X, Lü P, Zhang X, Zheng Y, Gao J (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082CrossRefGoogle Scholar
  16. 16.
    Luo J, Ma N, Pei H, Chen J, Li J, Gao J (2013) A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. J Exp Bot 64:5075–5084CrossRefGoogle Scholar
  17. 17.
    Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J (2014) RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. Plant J 78:578–590CrossRefGoogle Scholar
  18. 18.
    Yan HJ, Shi S, Ma N, Cao X, Zhang H, Qiu X, Wang Q, Jian H, Zhou N, Zhang Z, Tang KX (2018) Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. J Integr Plant Biol 60:34–44CrossRefGoogle Scholar
  19. 19.
    Yan H, Baudino S, Caissard JC, Nicolè F, Zhang H, Tang K, Li S, Lu S (2018) Functional characterization of the eugenol synthase gene in rose. Plant Physiol Biochem 129:21–26CrossRefGoogle Scholar
  20. 20.
    Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard JC, Couloux A, Cottret L, Aury JM, Szecsi J, Latrasse D, Madoui MA, François L, Fu XP, Yang SH, Dubois A, Piola A, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777CrossRefGoogle Scholar
  21. 21.
    Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F (2018) A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants 4:473–484CrossRefGoogle Scholar
  22. 22.
    Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA (2015) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8:486–488CrossRefGoogle Scholar
  23. 23.
    Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P, Hecquet R, Dubois A, Hibrand-Saint Oyant L, Jullien F, Nicolè F (2015) Biosynthesis of monoterpene scent compounds in roses. Science 349:81–83CrossRefGoogle Scholar
  24. 24.
    Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol 145:1161–1170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Huijun Yan
    • 1
  • Zhao Zhang
    • 2
  • Jean-Louis Magnard
    • 3
    Email author
  • Benoît Boachon
    • 3
  • Sylvie Baudino
    • 3
  • Kaixue Tang
    • 1
  1. 1.Flower Research Institute of Yunnan Academy of Agricultural SciencesKunmingChina
  2. 2.Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijingChina
  3. 3.Université de Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727Saint-EtienneFrance

Personalised recommendations