High-Resolution Molecular Imaging and Its Applications in Brain and Synapses

  • Nhu T. N. PhanEmail author
  • Silvio O. RizzoliEmail author
Part of the Neuromethods book series (NM, volume 155)


The molecular organization of the brain and its synapses is highly regulated and closely related to their biological functions. In this chapter, we introduce several super-resolution imaging technologies for brain and synapses, including optical microscopy (STED, STORM), expansion microscopy, and secondary ion mass spectrometry (SIMS, NanoSIMS). Super-resolution microscopy allows for visualization of the localization and dynamics of fluorescently labeled molecules whereas mass spectrometry imaging provides information on chemical structure and molecular turnover of the brain and synapses. The general principle, pros and cons of each technology as well as experimental considerations, such as labeling and sample preparation methods, are presented. In addition, correlative optical and mass spectrometry imaging, which appears as a recent trend of brain and synaptic imaging, is also discussed together with selected relevant applications in this research area.

Key words

Super-resolution imaging STED SIMS NanoSIMS Brain Synapse 



The authors acknowledge the support of grants from the Swedish Research Council (International Postdoc Grant) and the German Research Foundation (SFB 1286/B1) to N.T.N.P., and from the European Research Council (ERC Consolidator Grant NeuroMolAnatomy, 614765) to S.O.R.


  1. 1.
    Kliman M, Vijayakrishnan N, Wang L, Tapp JT, Broadie K, McLean JA (2010) Structural mass spectrometry analysis of lipid changes in a Drosophila epilepsy model brain. Mol BioSyst 6(6):958–966PubMedGoogle Scholar
  2. 2.
    Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2007) Lifetime proteomic profiling of an A30P r-synuclein of Parkinson’s disease. J Proteome Res 6:3729–3738PubMedGoogle Scholar
  3. 3.
    Han X, Holtzman D, McKeel D Jr, Kelley J, Morris J (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818PubMedGoogle Scholar
  4. 4.
    Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106:1–29PubMedGoogle Scholar
  5. 5.
    Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N et al (2011) Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 400(7):1933–1943PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B et al (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344(6187):1023–1028PubMedGoogle Scholar
  7. 7.
    Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856PubMedPubMedCentralGoogle Scholar
  8. 8.
    Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939PubMedGoogle Scholar
  9. 9.
    Phan NT, Fletcher JS, Ewing AG (2015) Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal Chem 87(8):4063–4071PubMedGoogle Scholar
  10. 10.
    Phan NT, Mohammadi AS, Dowlatshahi Pour M, Ewing AG (2016) Laser desorption ionization mass spectrometry imaging of drosophila brain using matrix sublimation versus modification with nanoparticles. Anal Chem 88(3):1734–1741PubMedGoogle Scholar
  11. 11.
    Mikula S, Denk W (2015) High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 12(6):541–546PubMedGoogle Scholar
  12. 12.
    Revelo NH, Rizzoli SO (2015) Application of STED microscopy to cell biology questions. In: Verveer PJ (ed) Advanced fluorescence microscopy: methods and protocols. Springer, New York, NY, pp 213–230Google Scholar
  13. 13.
    Neupane B, Ligler FS, Wang G (2014) Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt 19(8):080901-080901-080901-080909Google Scholar
  14. 14.
    Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249PubMedGoogle Scholar
  15. 15.
    Fornasiero EF, Opazo F (2015) Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. BioEssays 37(4):436–451PubMedGoogle Scholar
  16. 16.
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD et al (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325):606–612PubMedGoogle Scholar
  17. 17.
    Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2):185–188PubMedPubMedCentralGoogle Scholar
  18. 18.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813PubMedPubMedCentralGoogle Scholar
  19. 19.
    Curdt F, Herr SJ, Lutz T, Schmidt R, Engelhardt J, Sahl SJ et al (2015) isoSTED nanoscopy with intrinsic beam alignment. Opt Express 23(24):30891–30903PubMedGoogle Scholar
  20. 20.
    Rönnlund D, Xu L, Perols A, Gad AKB, Karlstro AE, Widengren J (2014) Multicolor fluorescence nanoscopy by photobleaching: concept, verification, and its application to resolve selective storage of proteins in platelets. ACS Nano 8(5):4358–4365PubMedGoogle Scholar
  21. 21.
    Tonnesen J, Nadrigny F, Willig KI, Wedlich-Soldner R, Nagerl UV (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101(10):2545–2552PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158PubMedGoogle Scholar
  23. 23.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782PubMedGoogle Scholar
  24. 24.
    Gottfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A et al (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105(1):L01–L03PubMedPubMedCentralGoogle Scholar
  25. 25.
    Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5(6):539–544PubMedGoogle Scholar
  26. 26.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tam J, Merino D (2015) Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem 135(4):643–658PubMedGoogle Scholar
  28. 28.
    Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573PubMedGoogle Scholar
  29. 29.
    Westphal V, Blanca CM, Dyba M, Kastrup L, Hell SW (2003) Laser-diode-stimulated emission depletion microscopy. Appl Phys Lett 82(18):3125–3127Google Scholar
  30. 30.
    Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918PubMedGoogle Scholar
  31. 31.
    van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009PubMedGoogle Scholar
  32. 32.
    Chen F, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347(6221):543–548PubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S et al (2016) Nanoscale imaging of RNA with expansion microscopy. Nat Methods 13(8):679–684PubMedPubMedCentralGoogle Scholar
  34. 34.
    Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP et al (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34(9):987–992PubMedPubMedCentralGoogle Scholar
  35. 35.
    Chozinski TJ, Halpern AR, Okawa H, Kim HJ, Tremel GJ, Wong RO et al (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13(6):485–488PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chang JB, Chen F, Yoon YG, Jung EE, Babcock H, Kang JS et al (2017) Iterative expansion microscopy. Nat Methods 14(6):593–599PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584PubMedGoogle Scholar
  38. 38.
    Opazo F, Levy M, Byrom M, Schafer C, Geisler C, Groemer TW et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9(10):938–939PubMedGoogle Scholar
  39. 39.
    Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943PubMedGoogle Scholar
  40. 40.
    Dean KM, Palmer AE (2014) Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol 10(7):512–523PubMedPubMedCentralGoogle Scholar
  41. 41.
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12(3):244–250. p 243 following 250PubMedPubMedCentralGoogle Scholar
  42. 42.
    Vreja IC, Nikic I, Göttfert F, Bates M, Kröhnert K, Outeiro TF et al (2015) Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9(11):11034–11041PubMedGoogle Scholar
  43. 43.
    Sun X, Zhang A, Baker B, Sun L, Howard A, Buswell J et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12(14):2217–2226PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136PubMedGoogle Scholar
  45. 45.
    Revelo NH, Kamin D, Truckenbrodt S, Wong AB, Reuter-Jessen K, Reisinger E et al (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J Cell Biol 205(4):591–606PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lukinavicius G, Reymond L, D'Este E, Masharina A, Gottfert F, Ta H et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11(7):731–733PubMedGoogle Scholar
  47. 47.
    Phan NTN, Li X, Ewing AG (2017) Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Chem Rev 1:0048Google Scholar
  48. 48.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588(19):3603–3612PubMedGoogle Scholar
  50. 50.
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F, Havelund R et al (2017) The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods 14(12):1175–1183PubMedGoogle Scholar
  51. 51.
    Fisher GL, Bruinen AL, Ogrinc Potocnik N, Hammond JS, Bryan SR, Larson PE et al (2016) A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS. Anal Chem 88(12):6433–6440PubMedGoogle Scholar
  52. 52.
    Chandra S, Smith DR, Morrison GH (2000) Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem 72(3):104A–114APubMedGoogle Scholar
  53. 53.
    Fletcher JF, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP, Lockyer P et al (2008) A new dynamic in mass spectral imaging of single biological cells. Anal Chem 80:9058–9064PubMedGoogle Scholar
  54. 54.
    Benninghoven A (1994) Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angew Chem Int Ed Engl 33:1023–1043Google Scholar
  55. 55.
    Kollmer F (2004) Cluster primary ion bombardment of organic materials. Appl Surf Sci 231–232:153–158Google Scholar
  56. 56.
    Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprevote O (2005) Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 16(10):1608–1618PubMedGoogle Scholar
  57. 57.
    Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC (2003) AC60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem 75:1754–1764PubMedGoogle Scholar
  58. 58.
    Phan NTN, Fletcher JS, Sjövall P, Ewing AG (2014) ToF-SIMS imaging of lipids and lipid related compounds in Drosophila brain. Surf Interface Anal 46(S1):123–126PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sjovall P, Lausmaa J, Johansson B (2004) Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76:4271–4278PubMedGoogle Scholar
  60. 60.
    Rabbani SN, Barber A, Fletcher JS, Lockyer NP, Vickerman JC (2013) Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams. Anal Chem 85(12):5654–5658Google Scholar
  61. 61.
    Angerer TB, Blenkinsopp P, Fletcher JS (2015) High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry. Int J Mass Spectrom 377:591–598Google Scholar
  62. 62.
    Brison J, Robinson MA, Benoit DS, Muramoto S, Stayton PS, Castner DG (2013) TOF-SIMS 3D imaging of native and non-native species within HeLa cells. Anal Chem 85(22):10869–10877PubMedPubMedCentralGoogle Scholar
  63. 63.
    Angerer TB, Fletcher JS (2014) 3D imaging of TiO2 nanoparticle accumulation in Tetrahymena pyriformis. Surf Interface Anal 46:198–203Google Scholar
  64. 64.
    Dowlatshahi Pour M, Jennische E, Lange S, Ewing AG, Malmberg P (2016) Food-induced changes of lipids in rat neuronal tissue visualized by ToF-SIMS imaging. Sci Rep 6:32797PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lanekoff I, Phan NT, Van Bell CT, Winograd N, Sjovall P, Ewing AG (2013) Mass spectrometry imaging of freeze-dried membrane phospholipids of dividing Tetrahymena pyriformis. Surf Interface Anal 45(1):211–214PubMedGoogle Scholar
  66. 66.
    Nagata Y, Ishizaki I, Waki M, Ide Y, Hossen MA, Ohnishi K et al (2014) Glutaraldehyde fixation method for single-cell lipid analysis by time-of-flight secondary ion-mass spectrometry. Surf Interface Anal 46:185–188Google Scholar
  67. 67.
    Bradford A, Atkinson J, Fuller N, Rand RP (2003) The effect of vitamin E on the structure of membrane lipid assemblies. J Lipid Res 44(10):1940–1945PubMedGoogle Scholar
  68. 68.
    Monroe EB, Jurchen JC, Lee J, Rubakhin SS, Sweedler JV (2005) Vitamin E imaging and localization in the neuronal membrane. JACS Commun 127:12152–12153Google Scholar
  69. 69.
    Tucker KR, Li Z, Rubakhin SS, Sweedler JV (2012) Secondary ion mass spectrometry imaging of molecular distributions in cultured neurons and their processes: comparative analysis of sample preparation. J Am Soc Mass Spectrom 23(11):1931–1938PubMedPubMedCentralGoogle Scholar
  70. 70.
    Roddy TP, Cannon DM, Ostrowski SG, Ewing AG, Winograd N (2003) Proton transfer in time-of-flight secondary ion mass spectrometry studies of frozen-hydrated dipalmitoylphosphatidylcholine. Anal Chem 75:4087–4094PubMedGoogle Scholar
  71. 71.
    Kurczy ME, Piehowski PD, Van Bell CT, Heien ML, Winograd N, Ewing AG (2010) Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc Natl Acad Sci U S A 107(7):2751–2756PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lanekoff I, Sjovall P, Ewing AG (2011) Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging. Anal Chem 83(13):5337–5343PubMedPubMedCentralGoogle Scholar
  73. 73.
    Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74PubMedGoogle Scholar
  74. 74.
    Zhang DS, Piazza V, Perrin BJ, Rzadzinska AK, Poczatek JC, Wang M et al (2012) Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature 481(7382):520–524PubMedPubMedCentralGoogle Scholar
  75. 75.
    Steinhauser ML, Bailey AP, Senyo SE, Guillermier C, Perlstein TS, Gould AP et al (2012) Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 481(7382):516–519PubMedPubMedCentralGoogle Scholar
  76. 76.
    Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL et al (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A 110(8):E613–E622PubMedPubMedCentralGoogle Scholar
  77. 77.
    Vreja IC, Kabatas S, Saka SK, Krohnert K, Hoschen C, Opazo F et al (2015) Secondary-ion mass spectrometry of genetically encoded targets. Angew Chem Int Ed 54(19):5784–5788Google Scholar
  78. 78.
    Kabatas S, Vreja IC, Saka SK, Hoschen C, Krohnert K, Opazo F et al (2015) A contamination-insensitive probe for imaging specific biomolecules by secondary ion mass spectrometry. Chem Commun 51(67):13221–13224Google Scholar
  79. 79.
    Jiang H, Goulbourne CN, Tatar A, Turlo K, Wu D, Beigneux AP et al (2014) High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. J Lipid Res 55(10):2156–2166PubMedPubMedCentralGoogle Scholar
  80. 80.
    Rakowska PD, Jiang H, Ray S, Pyne A, Lamarre B, Carr M et al (2013) Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proc Natl Acad Sci U S A 110(22):8918–8923PubMedPubMedCentralGoogle Scholar
  81. 81.
    Peteranderl R, Lechene C (2004) Measure of carbon and nitrogen stable isotope ratios in cultured cells. J Am Soc Mass Spectrom 15(4):478–485PubMedGoogle Scholar
  82. 82.
    He C, Hu X, Jung RS, Weston TA, Sandoval NP, Tontonoz P et al (2017) High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc Natl Acad Sci U S A 114(8):2000–2005PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sosinsky GE, Crum J, Jones YZ, Lanman J, Smarr B, Terada M et al (2008) The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. J Struct Biol 161(3):359–371PubMedGoogle Scholar
  84. 84.
    McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243(3):227–233PubMedGoogle Scholar
  85. 85.
    Grovenor CRM, Smart KE, Kilburn MR, Shore B, Dilworth JR, Martin B et al (2006) Specimen preparation for NanoSIMS analysis of biological materials. Appl Surf Sci 252(19):6917–6924Google Scholar
  86. 86.
    Korogod N, Petersen CC, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. elife 4.
  87. 87.
    Lee RFS, Riedel T, Escrig S, Maclachlan C, Knott GW, Davey CA et al (2017) Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics 9(10):1413–1420PubMedGoogle Scholar
  88. 88.
    Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84PubMedGoogle Scholar
  89. 89.
    Saka SK, Vogts A, Krohnert K, Hillion F, Rizzoli SO, Wessels JT (2014) Correlated optical and isotopic nanoscopy. Nat Commun 5:3664PubMedPubMedCentralGoogle Scholar
  90. 90.
    Kabatas S, Agui-Gonzalez P, Saal KA, Jahne S, Opazo F, Rizzoli SO et al (2019) Boron-containing probes for non-optical high-resolution imaging of biological samples. Angew Chem Int Ed Engl 58(11):3438–3443PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kabatas S, Agüi-Gonzalez P, Hinrichs R, Jähne S, Opazo F, Diederichsen U et al (2019) Fluorinated nanobodies for targeted molecular imaging of biological samples using nanoscale secondary ion mass spectrometry. J Anal At Spectrom 34(6):1083–1087Google Scholar
  92. 92.
    Lovric J, Dunevall J, Larsson A, Ren L, Andersson S, Meibom A et al (2017) Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 11(4):3446–3455PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Neuro- and Sensory PhysiologyUniversity of Göttingen Medical CenterGöttingenGermany
  2. 2.Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden

Personalised recommendations