Advertisement

Forget About Electron Micrographs: A Novel Guide for Using 3D Models for Quantitative Analysis of Dense Reconstructions

  • Daniya J. Boges
  • Marco Agus
  • Pierre Julius Magistretti
  • Corrado CalìEmail author
Protocol
  • 29 Downloads
Part of the Neuromethods book series (NM, volume 155)

Abstract

With the rapid evolvement in the automation of serial micrographs, acquiring fast and reliably giga- to terabytes of data is becoming increasingly common. Optical, or physical sectioning, and subsequent imaging of biological tissue at high resolution, offers the chance to postprocess, segment, and reconstruct micro- and nanoscopical structures, and then reveal spatial arrangements previously inaccessible or hardly imaginable with simple, single section, two-dimensional images. In some cases, three-dimensional models highlighted peculiar morphologies in a way that two-dimensional representations cannot be considered representative of that particular object morphology anymore, like mitochondria for instance. Observations like these are taking scientists toward a more common use of 3D models to formulate functional hypothesis, based on morphology. Because such models are so rich in details, we developed tools allowing for performing qualitative, visual assessments, as well as quantification directly in 3D. In this chapter we will revise our working pipeline and show a step-by-step guide to analyze our dataset.

Key words

3DEM 3D models 3D reconstruction 3D analysis Virtual reality Morphology 

References

  1. 1.
    Parekh R, Ascoli GA (2013) Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 77:1017–1038.  https://doi.org/10.1016/j.neuron.2013.03.008CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Coggan JS, Keller D, Calì C et al (2018) Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 14(8): e1006392Google Scholar
  3. 3.
    Borrett S, Hughes L (2016) Reporting methods for processing and analysis of data from serial block face scanning electron microscopy. J Microsc 263:3–9.  https://doi.org/10.1111/jmi.12377CrossRefPubMedGoogle Scholar
  4. 4.
    Lichtman JW, Pfister H, Shavit N (2014) The big data challenges of connectomics. Nat Neurosci 17:1448–1454.  https://doi.org/10.1038/nn.3837CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Neuro Cloud Consortium. Electronic address: jovo@jhu.edu, Neuro Cloud Consortium (2016) To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron 92:622–627. doi:  https://doi.org/10.1016/j.neuron.2016.10.033
  6. 6.
    Vogelstein JT, Amunts K, Andreou A et al (2016) Grand challenges for global brain sciences. arXiv 2016:q-bio.NCGoogle Scholar
  7. 7.
    Calì C, Baghabra J, Boges DJ et al (2016) Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol 524:23–38.  https://doi.org/10.1002/cne.23852CrossRefPubMedGoogle Scholar
  8. 8.
    Agus M, Boges D, Gagnon N, Magistretti PJ, Hadwiger M, Calì C (2018) GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments. Comput Graph 74:85–98Google Scholar
  9. 9.
    Coggan JS, Calí C, Keller D et al (2018) A process for digitizing and simulating biologically realistic oligocellular networks demonstrated for the neuro-glio-vascular ensemble. Front Neurosci 12:664Google Scholar
  10. 10.
    Boges D, Calì C, Magistretti PJ, Hadwiger M, Sicat R, Agus M (2019) Virtual environment for processing medial axis representations of 3D nanoscale reconstructions of brain cellular structures. 25th ACM Symposium on Virtual Reality Software and Technology, 1–2Google Scholar
  11. 11.
    Rich L, Brown AM (2016) Glycogen: multiple roles in the CNS. Neuroscientist.  https://doi.org/10.1177/1073858416672622
  12. 12.
    Vezzoli E, Calì C, De Roo M et al (2019) Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cereb Cortex 30(4):2114–2127.  https://doi.org/10.1093/cercor/bhz226
  13. 13.
    Beyer J, Al-Awami A, Kasthuri N et al (2013) ConnectomeExplorer: query-guided visual analysis of large volumetric neuroscience data. IEEE Trans Vis Comput Graph 19:2868–2877.  https://doi.org/10.1109/TVCG.2013.142CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329.  https://doi.org/10.1371/journal.pbio.0020329CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964.  https://doi.org/10.1523/JNEUROSCI.3189-07.2008CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hayworth KJ, Kasthuri N, Schalek R, Lichtman JW (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12:86–87.  https://doi.org/10.1017/s1431927606066268CrossRefGoogle Scholar
  17. 17.
    Titze B, Genoud C (2016) Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 108:307–323.  https://doi.org/10.1111/boc.201600024CrossRefPubMedGoogle Scholar
  18. 18.
    Seymour K-B, Mike R, Narayanan K et al (2013) Mojo 2.0: Connectome Annotation Tool. Front Neuroinform.  https://doi.org/10.3389/conf.fninf.2013.09.00060
  19. 19.
    Peng H, Hawrylycz M, Roskams J et al (2015) BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87:252–256.  https://doi.org/10.1016/j.neuron.2015.06.036CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Calì C, Kare K, Agus M et al (2019) A method for 3D reconstruction and virtual reality analysis of glial and neuronal cells. J Vis ExpGoogle Scholar
  21. 21.
    Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, Hadwiger M, Magistretti PJ (2019) 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 183:101696.  https://doi.org/10.1016/j.pneurobio.2019.101696. Epub 2019 Sep 21
  22. 22.
    Liu T, Jones C, Seyedhosseini M, Tasdizen T (2014) A modular hierarchical approach to 3D electron microscopy image segmentation. J Neurosci Methods 226:88–102.  https://doi.org/10.1016/j.jneumeth.2014.01.022CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kaynig V, Vazquez-Reina A, Knowles-Barley S et al (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77–88.  https://doi.org/10.1016/j.media.2015.02.001CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berning M, Boergens KM, Helmstaedter M (2015) SegEM: efficient image analysis for high-resolution connectomics. Neuron 87:1193–1206.  https://doi.org/10.1016/j.neuron.2015.09.003CrossRefPubMedGoogle Scholar
  25. 25.
    Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661.  https://doi.org/10.1016/j.cell.2015.06.054CrossRefPubMedGoogle Scholar
  26. 26.
    Templier T, Bektas K, Hahnloser RHR (2016) Eye-trace. Proceedings of the 2016 CHI conference on human factors in computing systems – CHI ‘16.  https://doi.org/10.1145/2858036.2858578
  27. 27.
    Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876.  https://doi.org/10.1038/nprot.2008.51CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Billeci L, Magliaro C, Pioggia G, Ahluwalia A (2013) NEuronMOrphological analysis tool: open-source software for quantitative morphometrics. Front Neuroinform 7:2.  https://doi.org/10.3389/fninf.2013.00002CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14:1081–1088.  https://doi.org/10.1038/nn.2868CrossRefPubMedGoogle Scholar
  30. 30.
    Cardona A, Saalfeld S, Schindelin J et al (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011.  https://doi.org/10.1371/journal.pone.0038011CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. elife.  https://doi.org/10.7554/eLife.12059
  32. 32.
    Sommer C, Straehle C, Kothe U, Hamprecht FA (2011) Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE international symposium on biomedical imaging: from nano to macro.  https://doi.org/10.1109/isbi.2011.5872394
  33. 33.
    Oe Y, Baba O, Ashida H et al (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64:1532–1545.  https://doi.org/10.1002/glia.23020CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Asadulina A, Conzelmann M, Williams EA et al (2015) Object-based representation and analysis of light and electron microscopic volume data using Blender. BMC Bioinformatics 16:229.  https://doi.org/10.1186/s12859-015-0652-7CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aguiar P, Sousa M, Szucs P (2013) Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics 11:393–403.  https://doi.org/10.1007/s12021-013-9188-zCrossRefPubMedGoogle Scholar
  36. 36.
    Jorstad A, Nigro B, Cali C et al (2015) NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics 13:83–92.  https://doi.org/10.1007/s12021-014-9242-5CrossRefPubMedGoogle Scholar
  37. 37.
    Dercksen VJ, Hege H-C, Oberlaender M (2014) The filament editor: an interactive software environment for visualization, proof-editing and analysis of 3D neuron morphology. Neuroinformatics 12:325–339.  https://doi.org/10.1007/s12021-013-9213-2CrossRefPubMedGoogle Scholar
  38. 38.
    Vandenberghe ME, Hérard A-S, Souedet N et al (2016) High-throughput 3D whole-brain quantitative histopathology in rodents. Sci Rep 6:20958.  https://doi.org/10.1038/srep20958CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Holst G, Berg S, Kare K et al (2016) Adding large EM stack support. In: 4th Saudi International Conference on Information Technology (Big Data Analysis) (KACSTIT), Riyadh, Saudi Arabia, 2016, pp 1–7.  https://doi.org/10.1109/KACSTIT.2016.7756066CrossRefGoogle Scholar
  40. 40.
    Barnes SJ, Cheetham CE, Liu Y et al (2015) Delayed and temporally imprecise neurotransmission in reorganizing cortical microcircuits. J Neurosci 35:9024–9037.  https://doi.org/10.1523/JNEUROSCI.4583-14.2015CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Foley JD et al (1997) Computer graphics: principles and practice, 2nd edn. Addison-Wesley Publishing, Reading, MA, pp 472–473Google Scholar
  42. 42.
    Totten C (2012) Game character creation with blender and unity. John Wiley & Sons, Hoboken, NJ, pp 10–13Google Scholar
  43. 43.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169.  https://doi.org/10.1145/37402.37422CrossRefGoogle Scholar
  44. 44.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18:509–517.  https://doi.org/10.1145/361002.361007CrossRefGoogle Scholar
  45. 45.
    Maneewongvatana S, Mount DM (1999) It’s okay to be skinny, if your friends are fat. In: Center for geometric computing 4th annual workshop on computational geometry, pp 1–8Google Scholar
  46. 46.
    Jones E, Oliphant T, Peterson P, et al. (2015) SciPy: open source scientific tools for python, 2001. 73:86. http://www.scipy.org
  47. 47.
    Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830Google Scholar
  48. 48.
    DeFreitas T, Saddiki H, Flaherty P (2016) GEMINI: a computationally-efficient search engine for large gene expression datasets. BMC Bioinformatics.  https://doi.org/10.1186/s12859-016-0934-8
  49. 49.
    Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDDGoogle Scholar
  50. 50.
    Gan J, Tao Y (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, New York, NY, pp 519–530Google Scholar
  51. 51.
    Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65.  https://doi.org/10.1016/0377-0427(87)90125-7CrossRefGoogle Scholar
  52. 52.
    Lewis D (2014) The CAVE artists. Nat Med 20:228–230.  https://doi.org/10.1038/nm0314-228CrossRefPubMedGoogle Scholar
  53. 53.
    Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901CrossRefGoogle Scholar
  54. 54.
    Balogh T, Zanetti G, Bouvier E et al (2006) An interactive multi-user holographic environment. ACM SIGGRAPH 2006 Emerging technologies on – SIGGRAPH ‘06.  https://doi.org/10.1145/1179133.1179152
  55. 55.
    Agus M, Gobbetti E, Guitiàn JAI et al (2008) GPU accelerated direct volume rendering on an interactive light field display. Comput Graph Forum 27:231–240.  https://doi.org/10.1111/j.1467-8659.2008.01120.xCrossRefGoogle Scholar
  56. 56.
    Marton F, Agus M, Gobbetti E et al (2012) Natural exploration of 3D massive models on large-scale light field displays using the FOX proximal navigation technique. Comput Graph 36:893–903.  https://doi.org/10.1016/j.cag.2012.06.005CrossRefGoogle Scholar
  57. 57.
    Calì C, Agus M, Gagnon N, Hadwiger M, Magistretti PJ (2017) Visual analysis of glycogen derived lactate absorption in dense and sparse surface reconstructions of rodent brain structures. Eurograph Assoc.  https://doi.org/10.2312/stag.20171224
  58. 58.
    Brooke J et al (1996) Sus—a quick and dirty usability scale. Usability evaluation. Industry 189(194):4–7Google Scholar
  59. 59.
    Salvatore L, Christina K (2008) Simple guidelines for testing vr applications. In: Advances in human computer interaction. InTech, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Daniya J. Boges
    • 1
  • Marco Agus
    • 2
  • Pierre Julius Magistretti
    • 1
  • Corrado Calì
    • 1
    • 3
    Email author
  1. 1.BESE DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Visual Computing CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri OttolenghiUniversità degli studi di TorinoTorinoItaly

Personalised recommendations