Correlative Super Resolution and Electron Microscopy to Detect Molecules in Their Native Cellular Context

  • Tyler Ogunmowo
  • Sumana Raychaudhuri
  • Grant Kusick
  • Shuo Li
  • Shigeki WatanabeEmail author
Part of the Neuromethods book series (NM, volume 155)


Nano-resolution fluorescence electron microscopy (nano-fEM) provides the precise localization of biomacromolecules within electron micrographs. Classically, electron microscopy has provided the highest possible cellular detail, boasting nanometer-scale resolution. However, while cellular ultrastructure is clearly defined, molecular identity is obscured even when electron dense tags in the form of antibodies or locally polymerized moieties are used. Fluorescence microscopy complements electron microscopy by providing significant molecular specificity. Further, super-resolution techniques surpass the diffraction limit and localize labelled proteins at ~20 nm resolution. However, sparse light-emitting points do little to provide the subcellular context of labeled molecules. In nano-fEM, fluorescently tagged biological samples are first high-pressure frozen and processed via freeze substitution for fixation and to preserve fluorescence. Afterwards, samples are embedded in hydrophilic resin, cut into ultrathin sections, and visualized by, for example, direct stochastic optical reconstruction microscopy (dSTORM) followed by transmission electron microscopy. Fluorescence and electron micrographs are correlated by use of fiduciary markers and post-processing. This approach also provides 3D information similar to Array Tomography by serial sectioning of ultrathin sections followed by super-resolution microscopy and electron microscopy of each section in a sequential manner, enabling 3D reconstruction of the z axis.

Key words

Fluorescence EM CLEM Super-CLEM Nano-fEM (nano resolution fluorescence electron microscopy) Localization microscopy Photoactivated localization microscopy (PALM) Stochastic optical reconstruction microscopy (STORM) 


  1. 1.
    Morphew MK (2007) 3D immunolocalization with plastic sections. Methods Cell Biol 79:493–513CrossRefGoogle Scholar
  2. 2.
    Rostaing P, Weimer RM, Jorgensen EM et al (2004) Preservation of immunoreactivity and fine structure of adult C. elegans tissues using high-pressure freezing. J Histochem Cytochem 52:1–12CrossRefGoogle Scholar
  3. 3.
    Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083CrossRefGoogle Scholar
  4. 4.
    Duc-Nguyen H, Rosenblum EN (1967) Immuno-electron microscopy of the morphogenesis of mumps virus. J Virol 1:415–429CrossRefGoogle Scholar
  5. 5.
    Roth J, Bendayan M, Carlemalm E et al (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671CrossRefGoogle Scholar
  6. 6.
    Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12(1):51–54CrossRefGoogle Scholar
  7. 7.
    Martell JD, Deerinck TJ, Sancak Y et al (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148CrossRefGoogle Scholar
  8. 8.
    Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041CrossRefGoogle Scholar
  9. 9.
    Hamos JE, Van Horn SC, Raczkowski D, Uhlrich DJ, Sherman SM (1985) Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317:618–621. Scholar
  10. 10.
    Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29(6):775CrossRefGoogle Scholar
  11. 11.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  12. 12.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272CrossRefGoogle Scholar
  13. 13.
    Fölling J, Bossi M, Bock H et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945CrossRefGoogle Scholar
  14. 14.
    Rust MJ, Bates M, Zhuang X (2006) Sub- diffraction- limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefGoogle Scholar
  15. 15.
    Heilemann M, Van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176CrossRefGoogle Scholar
  16. 16.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782CrossRefGoogle Scholar
  17. 17.
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc (Oxford) 198:82–87CrossRefGoogle Scholar
  18. 18.
    Kopek BG, Paez-Segala MG, Shtengel G et al (2017) Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc 12(5):916–946CrossRefGoogle Scholar
  19. 19.
    Koga D, Kusumi S, Shodo R et al (2015) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64:387–394CrossRefGoogle Scholar
  20. 20.
    Kim D, Deerinck TJ, Sigal YM et al (2015) Correlative stochastic optical reconstruction microscopy and electron microscopy. PLoS One 10:e0124581–e0124520CrossRefGoogle Scholar
  21. 21.
    Collman F, Buchanan J, Phend KD et al (2015) Mapping synapses by conjugate light-electron array tomography. J Neurosci 35:5792–5807CrossRefGoogle Scholar
  22. 22.
    Paez-Segala MG, Sun MG, Shtengel G et al (2015) Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12:215–218CrossRefGoogle Scholar
  23. 23.
    Löschberger A, Franke C, Krohne G et al (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127:4351–4355CrossRefGoogle Scholar
  24. 24.
    Shtengel G, Wang Y, Zhang Z et al (2014) Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 123:273–294CrossRefGoogle Scholar
  25. 25.
    Perkovic M, Kunz M, Endesfelder U et al (2014) Correlative light- and electron microscopy with chemical tags. J Struct Biol 186:205–213CrossRefGoogle Scholar
  26. 26.
    Sochacki KA, Shtengel G, Van Engelenburg SB et al (2014) Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 11:305–308CrossRefGoogle Scholar
  27. 27.
    Kopek BG, Shtengel G, Grimm JB et al (2013) Correlative photoactivated localization and scanning electron microscopy. PLoS One 8:e77209CrossRefGoogle Scholar
  28. 28.
    Nanguneri S, Flottmann B, Horstmann H et al (2012) Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7:e38098CrossRefGoogle Scholar
  29. 29.
    Kopek BG, Shtengel G, Xu CS et al (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A 109:6136–6141CrossRefGoogle Scholar
  30. 30.
    Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36CrossRefGoogle Scholar
  31. 31.
    Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fl uorescence nanoscopy. Nat Methods 8:80–84CrossRefGoogle Scholar
  32. 32.
    Watanabe S, Jorgensen EM (2012) Visualizing proteins in electron micrographs at nanometer resolution. Methods Cell Biol 111:283–306CrossRefGoogle Scholar
  33. 33.
    Watanabe S, Lehmann M, Hujber E et al (2014) Nanometer-resolution fluorescence electron microscopy (nano-EM) in cultured cells. Methods Mol Biol 1117:503–526CrossRefGoogle Scholar
  34. 34.
    Sawaguchi A, Mcdonald KL, Karvar S et al (2002) A new approach for high-pressure freezing of primary culture cells: the fi ne struc- ture and stimulation-associated transformation of cultured rabbit gastric parietal cells. J Micros (Oxford) 208:158–166CrossRefGoogle Scholar
  35. 35.
    Hess MW, Müller M, Debbage PL et al (2000) Cryopreparation provides new insight into the effects of brefeldin A on the structure of the HepG2 Golgi apparatus. J Struct Biol 130:63–72CrossRefGoogle Scholar
  36. 36.
    Urh M, Rosenberg M (2012) HaloTag, a platform technology for protein analysis. Curr Chem Genomics 6:72–78CrossRefGoogle Scholar
  37. 37.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Tyler Ogunmowo
    • 1
    • 2
  • Sumana Raychaudhuri
    • 1
  • Grant Kusick
    • 1
    • 2
  • Shuo Li
    • 1
    • 3
  • Shigeki Watanabe
    • 1
    • 4
    Email author
  1. 1.Department of Cell Biology, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Biochemistry, Cellular and Molecular Biology Program, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  4. 4.Solomon H. Snyder Department of Neuroscience, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations