Advertisement

Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments

  • Hana Bertrand-Rakusová
  • Youssef Chebli
  • Anja GeitmannEmail author
Protocol
  • 112 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2160)

Abstract

Live cell imaging at high resolution of pollen tubes growing in vitro requires an experimental setup that maintains the elongated cells in a single optical plane and allows for controlled exchange of growth medium. As a low-cost alternative to lithography-based microfluidics, we developed a silicone-based spacer system that allows introducing spatial features and flexible design. These growth chambers can be cleaned and reused repeatedly.

Key words

Live cell imaging Fluorescence imaging Micromanipulation Silicone chambers 

References

  1. 1.
    Rakusova H, Geitmann A (2017) Control of cellular morphogenesis through intracellular trafficking. In: Obermeyer G, Feijó J (eds) Pollen tube tip growth: from biophysical aspects to systems biology. Springer, New York, NY, pp 129–148CrossRefGoogle Scholar
  2. 2.
    Chebli Y, Kroeger J, Geitmann A (2013) Transport logistics in pollen tubes. Mol Plant 6:1037–1052CrossRefGoogle Scholar
  3. 3.
    Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738CrossRefGoogle Scholar
  4. 4.
    Li HJ, Meng JG, Yang WC (2018) Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod 31:31–41CrossRefGoogle Scholar
  5. 5.
    Chebli Y, Geitmann A (2015) Live cell and immuno-labeling techniques to study gravitational effects on single plant cells. In: Blancaflor E (ed) Plant gravitropism, Methods in molecular biology. Humana, New York, NY, pp 209–226CrossRefGoogle Scholar
  6. 6.
    Agudelo CG, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812CrossRefGoogle Scholar
  7. 7.
    Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip – a modular, MEMS (microelectromechanical systems)-based platform for experimentation and phenotyping of tip growing cells. Plant J 73:1057–1068CrossRefGoogle Scholar
  8. 8.
    Agudelo CG, Packirisamy M, Geitmann A (2013) Lab-on-a-chip for studying growing pollen tubes. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis: methods and protocols, Methods in molecular biology. Springer, New York, NY, pp 237–248Google Scholar
  9. 9.
    Agudelo CG, Sanati Nezhad A, Ghanbari M, Packirisamy M, Geitmann A (2012) A microfluidic platform for the investigation of elongation growth in pollen tubes. J Micromech Microeng 22:115009CrossRefGoogle Scholar
  10. 10.
    Geitmann A (2017) Microfluidics and MEMS (microelectromechanical systems)-based platforms for experimental analysis of pollen tube growth behavior and quantification of cell mechanical properties. In: Obermeyer G, Feijó J (eds) Pollen tube tip growth: from biophysical aspects to systems biology. Springer, New York, NY, pp 87–103CrossRefGoogle Scholar
  11. 11.
    Ghanbari M, Sanati Nezhad A, Agudelo CG, Packirisamy M, Geitmann A (2014) Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J Biosci Bioeng 117:504–511CrossRefGoogle Scholar
  12. 12.
    Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195CrossRefGoogle Scholar
  13. 13.
    Sanati Nezhad A, Ghanbari M, Agudelo CG, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2014) Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 16:23–33CrossRefGoogle Scholar
  14. 14.
    Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. PNAS 110:8093–8098CrossRefGoogle Scholar
  15. 15.
    Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13:2599–2608CrossRefGoogle Scholar
  16. 16.
    Sanati Nezhad A, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2012) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sensors J 13:601–609CrossRefGoogle Scholar
  17. 17.
    Yanagisawa N, Higashiyama T (2018) Quantitative assessment of chemotropism in pollen tubes using microslit channel filters. Biomicrofluidics 12:024113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Hana Bertrand-Rakusová
    • 1
  • Youssef Chebli
    • 1
  • Anja Geitmann
    • 1
    Email author
  1. 1.Department of Plant ScienceMcGill UniversityMontrealCanada

Personalised recommendations