Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics

  • Firas Bou Daher
  • Anja GeitmannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2160)


Successful fertilization and seed set require the pollen tube to grow through several tissues, to change its growth orientation by responding to directional cues, and to ultimately reach the embryo sac and deliver the paternal genetic material. The ability to respond to external directional cues is, therefore, a pivotal feature of pollen tube behavior. In order to study the regulatory mechanisms controlling and mediating pollen tube tropic growth, a robust and reproducible method for the induction of growth reorientation in vitro is required. Here we describe a galvanotropic chamber designed to expose growing pollen tubes to precisely calibrated directional cues triggering reorientation while simultaneously tracking subcellular processes using live cell imaging and confocal laser scanning microscopy.

Key words

Directional cues Galvanotropism Galvanotropic chamber Guided growth Pollen tube Tropic growth 


  1. 1.
    Cheung AY, Wu H-M (2001) Pollen tube guidance—right on target. Science 293:1441–1442CrossRefGoogle Scholar
  2. 2.
    Geitmann A, Palanivelu R (2007) Fertilization requires communication: signal generation and perception during pollen tube guidance. Floriculture and Ornamental Biotechnol 1:77–89Google Scholar
  3. 3.
    Cheung AY, Wang H, Wu H-M (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393CrossRefGoogle Scholar
  4. 4.
    Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59CrossRefGoogle Scholar
  5. 5.
    Higashiyama T, Kuroiwa H, Kuroiwa T (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr Opin Plant Biol 6:36–41CrossRefGoogle Scholar
  6. 6.
    Tung C-W, Dwyer KG, Nasrallah ME, Nasrallah JB (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138:977–989CrossRefGoogle Scholar
  7. 7.
    Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7CrossRefGoogle Scholar
  8. 8.
    Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714CrossRefGoogle Scholar
  9. 9.
    Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198CrossRefGoogle Scholar
  10. 10.
    Márton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630CrossRefGoogle Scholar
  11. 11.
    Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576CrossRefGoogle Scholar
  12. 12.
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357CrossRefGoogle Scholar
  13. 13.
    Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449CrossRefGoogle Scholar
  14. 14.
    Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26CrossRefGoogle Scholar
  15. 15.
    Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551CrossRefGoogle Scholar
  16. 16.
    Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245CrossRefGoogle Scholar
  17. 17.
    Wang T, Liang L, Xue Y, Jia P-F, Chen W, Zhang M-X, Wang Y-C, Li H-J, Yang W-C (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241CrossRefGoogle Scholar
  18. 18.
    Zhang X, Liu W, Nagae TT, Takeuchi H, Zhang H, Han Z, Higashiyama T, Chai J (2017) Structural basis for receptor recognition of pollen tube attraction peptides. Nat Commun 8:1331CrossRefGoogle Scholar
  19. 19.
    Luo N, Yan A, Liu G, Guo J, Rong D, Kanaoka MM, Xiao Z, Xu G, Higashiyama T, Cui X, Yang Z (2017) Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nat Commun 8:1687CrossRefGoogle Scholar
  20. 20.
    Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S (2017) Organizational Innovation of apical actin filaments drives rapid pollen tube growth and turning. Mol Plant 10:930–947CrossRefGoogle Scholar
  21. 21.
    Malhó R, Read ND, Pais MS, Trewavas AJ (1994) Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J 5:331–341CrossRefGoogle Scholar
  22. 22.
    Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949CrossRefGoogle Scholar
  23. 23.
    Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195CrossRefGoogle Scholar
  24. 24.
    Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068CrossRefGoogle Scholar
  25. 25.
    Malhó R, Feijó JA, Pais MSS (1992) Effect of electrical fields and external ionic currents on pollen-tube orientation. Sex Plant Reprod 5:57–63CrossRefGoogle Scholar
  26. 26.
    Wang C, Rathore KS, Robinson KR (1989) The responses of pollen to applied electrical fields. Dev Biol 136:405–410CrossRefGoogle Scholar
  27. 27.
    Nakamura N, Fukushima A, Iwayama H, Suzuki H (1991) Electrotropism of pollen tubes of camellia and other plants. Sex Plant Reprod 4:138–143CrossRefGoogle Scholar
  28. 28.
    Agudelo C, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812CrossRefGoogle Scholar
  29. 29.
    Bou Daher F, Chebli Y, Geitmann A (2009) Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Rep 28:347–357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulUSA
  2. 2.Department of Plant ScienceMcGill UniversityMontrealCanada

Personalised recommendations