Mathematical Modeling of Plant Metabolism in a Changing Temperature Regime

  • Lisa Fürtauer
  • Thomas NägeleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2156)


Changes in environmental temperature regimes significantly affect plant growth, development and reproduction. Within a multigenic process termed acclimation, many plant species of the temperate region are able to adjust their metabolism to low and high temperature. Temperature-induced metabolic reprogramming is a nonlinear process affecting numerous enzyme kinetic reactions and pathways. The analysis of metabolic reprogramming during temperature acclimation is essentially supported by mathematical modeling which enables the study of nonlinear enzyme kinetics in context of metabolic networks and pathway regulation. This chapter introduces mathematical modeling of plant metabolism during a dynamic environmental temperature regime. A focus is laid on kinetic modeling and thermodynamic constraints.

Key words

Temperature acclimation Climate change Mathematical modeling Plant metabolism Enzyme activity Kinetic modeling Metabolic network Thermodynamics 



We thank Jakob Weiszmann (University of Vienna), Maria Pacheco (University of Luxemburg) and our colleagues from Plant Evolutionary Cell Biology at LMU Munich for their support and valuable discussions. This work was supported by the LMUexcellent Junior Researcher Fund.


  1. 1.
    Piao S, Liu Q, Chen A et al (2019) Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol 25:1922–1940CrossRefGoogle Scholar
  2. 2.
    Ma S, Osuna JL, Verfaillie J et al (2017) Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: a 15-year study in a Californian oak-grass savanna. Photosynth Res 132:277–291CrossRefGoogle Scholar
  3. 3.
    Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117CrossRefGoogle Scholar
  4. 4.
    Herrmann HA, Schwartz J-M, Johnson GN (2019) Metabolic acclimation - a key to enhancing photosynthesis in changing environments? J Exp Bot 70:3043–3056CrossRefGoogle Scholar
  5. 5.
    Hannah MA, Wiese D, Freund S et al (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112CrossRefGoogle Scholar
  6. 6.
    Weckwerth W (2011) Green systems biology - from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome 75:284–305CrossRefGoogle Scholar
  7. 7.
    Zuther E, Schaarschmidt S, Fischer A et al (2019) Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ 42:854–873PubMedGoogle Scholar
  8. 8.
    Fürtauer L, Weiszmann J, Weckwerth W et al (2018) Mathematical modeling approaches in plant metabolomics. In: António C (ed) Plant metabolomics: methods and protocols. Springer, New York, NY, pp 329–347CrossRefGoogle Scholar
  9. 9.
    Ni XY, Drengstig T, Ruoff P (2009) The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation. Biophys J 97:1244–1253CrossRefGoogle Scholar
  10. 10.
    Gil K-E, Park C-M (2019) Thermal adaptation and plasticity of the plant circadian clock. New Phytol 221:1215–1229CrossRefGoogle Scholar
  11. 11.
    Onai K, Okamoto K, Nishimoto H et al (2004) Large‐scale screening of Arabidopsis circadian clock mutants by a high‐throughput real‐time bioluminescence monitoring system. Plant J 40:1–11CrossRefGoogle Scholar
  12. 12.
    Locke JCW, Kozma-Bognár L, Gould PD et al (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59CrossRefGoogle Scholar
  13. 13.
    Fogelmark K, Troein C (2014) Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS Comput Biol 10:e1003705CrossRefGoogle Scholar
  14. 14.
    Gomes de Oliveira Dal’Molin G, Nielsen LK (2018) Plant genome-scale reconstruction: from single cell to multi-tissue modelling and omics analyses. Curr Opin Biotechnol 49(Suppl C):42–48CrossRefGoogle Scholar
  15. 15.
    Sweetlove LJ, Nielsen J, Fernie AR (2017) Engineering central metabolism – a grand challenge for plant biologists. Plant J 90:749–763CrossRefGoogle Scholar
  16. 16.
    Weiszmann J, Fürtauer L, Weckwerth W et al (2018) Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J 285:4082–4098CrossRefGoogle Scholar
  17. 17.
    Funahashi A, Morohashi M, Kitano H et al (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162CrossRefGoogle Scholar
  18. 18.
    Hoops S, Sahle S, Gauges R et al (2006) COPASI - a complex pathway simulator. Bioinformatics 22:3067–3074CrossRefGoogle Scholar
  19. 19.
    Loew LM, Schaff JC (2001) The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406CrossRefGoogle Scholar
  20. 20.
    Klipp E, Liebermeister W, Wierling C et al (2016) Systems biology: a textbook. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  22. 22.
    Naithani S, Preece J, D’Eustachio P et al (2016) Plant reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 45:D1029–D1039CrossRefGoogle Scholar
  23. 23.
    Caspi R, Billington R, Fulcher CA et al (2017) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639CrossRefGoogle Scholar
  24. 24.
    Steuer R, Gross T, Selbig J et al (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A 103:11868–11873CrossRefGoogle Scholar
  25. 25.
    Reznik E, Segrè D (2010) On the stability of metabolic cycles. J Theor Biol 266:536–549CrossRefGoogle Scholar
  26. 26.
    Henkel S, Nägele T, Hörmiller I et al (2011) A systems biology approach to analyse leaf carbohydrate metabolism in Arabidopsis thaliana. EURASIP J Bioinform Syst Biol 2011:2CrossRefGoogle Scholar
  27. 27.
    Fürtauer L, Nägele T (2016) Approximating the stabilization of cellular metabolism by compartmentalization. Theory Biosci 135:73–87CrossRefGoogle Scholar
  28. 28.
    Nägele T (2014) Linking metabolomics data to underlying metabolic regulation. Front Mol Biosci 1:22CrossRefGoogle Scholar
  29. 29.
    Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8CrossRefGoogle Scholar
  30. 30.
    Bisswanger H (2002) Enzyme kinetics: principles and methods. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  31. 31.
    Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494CrossRefGoogle Scholar
  32. 32.
    Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Schomburg I, Hofmann O, Baensch C et al (2000) Enzyme data and metabolic information: BRENDA, a resource for research in biology, biochemistry, and medicine. Gene Funct Dis 1:109–118CrossRefGoogle Scholar
  35. 35.
    Banga JR (2008) Optimization in computational systems biology. BMC Syst Biol 2:47CrossRefGoogle Scholar
  36. 36.
    Reali F, Priami C, Marchetti L (2017) Optimization algorithms for computational systems biology. Front Appl Math Stat 3:6CrossRefGoogle Scholar
  37. 37.
    Weise T (2009) Global optimization algorithms-theory and application. Self-Published Thomas WeiseGoogle Scholar
  38. 38.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS ‘95, proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, Washington, DC, pp 39–43CrossRefGoogle Scholar
  39. 39.
    Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). IEEE, Washington, DC, pp 69–73CrossRefGoogle Scholar
  40. 40.
    Parrish JK, Hamner WM (1997) Animal groups in three dimensions: how species aggregate. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Evolutionäre Zellbiologie der PflanzenLudwig-Maximilians-Universität MünchenPlaneggGermany

Personalised recommendations