Proteomic Approaches to Identify Cold-Regulated Plasma Membrane Proteins

  • Md Mostafa Kamal
  • Daisuke Takahashi
  • Takato Nakayama
  • Yushi Miki
  • Yukio Kawamura
  • Matsuo UemuraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2156)


Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze–thaw cycle. Changes in plasma membrane protein composition have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran–polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.

Key words

Cold acclimation Plasma membrane Nano-LC-MS/MS Shotgun proteomics Label-free semiquantification In-solution digestion In-gel digestion 



This work was supported in part by a Research Fellowship for Young Scientists (#247373 to D.T.) and Grants-in-Aid for Scientific Research (#22120003, #24370018, #17H03961 to M.U. and Y.K.) from JSPS, Japan.


  1. 1.
    Levitt J (1980) Response of plants to environmental stresses. J Range Manag 5:188–228Google Scholar
  2. 2.
    Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223CrossRefGoogle Scholar
  3. 3.
    Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599CrossRefGoogle Scholar
  4. 4.
    Steponkus PL (1984) Role of plasma membrane in cold acclimation and freezing injury in plants. Annu Rev Plant Physiol 35:543–584CrossRefGoogle Scholar
  5. 5.
    Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478CrossRefGoogle Scholar
  6. 6.
    Uemura M, Tominaga Y, Nakagawara C et al (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89CrossRefGoogle Scholar
  7. 7.
    Yoshida S, Uemura M (1984) Protein and lipid compositions of isolated plasma membranes from orchard grass (DactyIis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37CrossRefGoogle Scholar
  8. 8.
    Uemura M, Yoshida S (1984) Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 75:818–826CrossRefGoogle Scholar
  9. 9.
    Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83:761–767CrossRefGoogle Scholar
  10. 10.
    Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30CrossRefGoogle Scholar
  11. 11.
    Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154CrossRefGoogle Scholar
  12. 12.
    Minami A, Fujiwara M, Furuto A et al (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol 50:341–359CrossRefGoogle Scholar
  13. 13.
    Mazars C, Thion L, Thuleau P et al (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420CrossRefGoogle Scholar
  14. 14.
    Orvar BL, Sangwan V, Omann F et al (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794CrossRefGoogle Scholar
  15. 15.
    Sangwan V, Foulds I, Singh J et al (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12CrossRefGoogle Scholar
  16. 16.
    Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002CrossRefGoogle Scholar
  17. 17.
    Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433CrossRefGoogle Scholar
  18. 18.
    Yamazaki T, Kawamura Y, Minami A et al (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404CrossRefGoogle Scholar
  19. 19.
    Kondo M, Takahashi D, Minami A et al (2012) Function of Arabidopsis dynamin-related proteins IE during cold acclimation. Cryobiol Cryotechnol 58:105–111. (In Japanese with English summary)Google Scholar
  20. 20.
    Miki Y, Takahashi D, Kawamura Y et al (2018) Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteome 197:71–81CrossRefGoogle Scholar
  21. 21.
    Takahashi D, Kawamura Y, Yamashita T et al (2012) Detergent-resistant plasma membrane proteome in oat and rye: similarities and dissimilarities between two monocotyledonous plants. J Proteome Res 11:1654–1665CrossRefGoogle Scholar
  22. 22.
    Takahashi D, Li B, Nakayama T et al (2013) Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci 4:90PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakayama T, Takahashi D, Kawamura Y et al (2013) Compositional changes in plasma membrane proteins in Brachypodium distachyon during cold acclimation. Cryobiol Cryotechnol 59:61–65. (In Japanese with English summary)Google Scholar
  24. 24.
    Kasuga J, Takahashi D, Kawamura Y et al. (2012) Proteomic analysis of seasonal cold-deacclimation process in poplar phloem and xylem tissues. Abstract of Plant and Microbe Adaptation to Cold 2012 (O-18)Google Scholar
  25. 25.
    Li B, Takahashi D, Kawamura Y et al (2012) Comparison of plasma membrane proteomic changes of Arabidopsis suspension cells (T87 line) after cold and abscisic acid treatment in association with freezing tolerance development. Plant Cell Physiol 53:542–554Google Scholar
  26. 26.
    Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D et al (2018) Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses. J Proteome 170:117–129CrossRefGoogle Scholar
  27. 27.
    Gutierrez-Carbonell E, Takahashi D, Lüthje S et al (2016) A shotgun proteomic approach reveals that Fe deficiency causes marked changes in the protein profiles of plasma membrane and detergent-resistant microdomain preparations from Beta vulgaris roots. J Proteome Res 15:2510–2524CrossRefGoogle Scholar
  28. 28.
    Gutierrez-Carbonell E, Takahashi D, Lattanzio G et al (2014) The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J Proteome Res 13:2941–2953CrossRefGoogle Scholar
  29. 29.
    Takahashi D, Li B, Nakayama T, Kawamura Y et al (2014) Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. In: Novo JVJ, Komatsu S, Weckwerth W, Wjienkoopeds S (eds) Methods in molecular biology (plant proteomics: methods and protocols), 2nd edn. Springer Science + Business Media, LLC, New York, pp 481–498CrossRefGoogle Scholar
  30. 30.
    Schwacke R, Schneider A, van der Graaff E, Fischer K et al (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26CrossRefGoogle Scholar
  31. 31.
    Hooper CM, Castleden IR, Tanz SK et al (2016) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074CrossRefGoogle Scholar
  32. 32.
    Tian T, Liu Y, Yan H et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 45:W122–W129CrossRefGoogle Scholar
  33. 33.
    Horton P, Park KJ, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587CrossRefGoogle Scholar
  34. 34.
    Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335CrossRefGoogle Scholar
  35. 35.
    Sun Q, Zybailov B, Majeran W et al (2008) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974CrossRefGoogle Scholar
  36. 36.
    Lalonde S, Sero A, Pratelli R et al (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2. Front Physiol 1:24CrossRefGoogle Scholar
  37. 37.
    Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34CrossRefGoogle Scholar
  38. 38.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  39. 39.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Md Mostafa Kamal
    • 1
  • Daisuke Takahashi
    • 1
    • 2
  • Takato Nakayama
    • 3
  • Yushi Miki
    • 3
  • Yukio Kawamura
    • 1
    • 3
  • Matsuo Uemura
    • 1
    • 3
    Email author
  1. 1.United Graduate School of Agricultural Sciences, Faculty of AgricultureIwate UniversityMoriokaJapan
  2. 2.Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
  3. 3.Department of Plant-Bioscience, Faculty of AgricultureIwate UniversityMoriokaJapan

Personalised recommendations