Advertisement

In Vitro Generation of Vascular Wall–Typical Mesenchymal Stem Cells (VW-MSC) from Murine Induced Pluripotent Stem Cells Through VW-MSC–Specific Gene Transfer

  • Jennifer Steens
  • Hannes Klump
  • Diana KleinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2155)

Abstract

Among the adult stem cells, multipotent mesenchymal stem cells (MSCs) turned out to be a promising option for cell-based therapies for the treatment of various diseases including autoimmune and cardiovascular disorders. MSCs bear a high proliferation and differentiation capability and exert immunomodulatory functions while being still clinically safe. As tissue-resident stem cells, MSCs can be isolated from various tissue including peripheral or umbilical cord blood, placenta, blood, fetal liver, lung, adipose tissue, and blood vessels, although the most commonly used source for MSCs is the bone marrow. However, the proportion of MSCs in primary isolates from adult tissue biopsies is rather low, and therefore MSCs must be intensively expanded in vitro before the MSCs find particular use in therapies that may require extensive and repetitive cell replacement. Therefore, more easily accessible sources of MSCs are needed. Here, we present a detailed protocol to generate tissue-typical MSCs by direct linage conversion using transcription factors defining target MSC identity from murine induced pluripotent stem cells (iPSCs).

Key words

Mesenchymal stem cells Vascular wall Lineage conversion In vitro generation HOX Differentiation iPSC 

Notes

Acknowledgments

The Jürgen Manchot Stiftung (Düsseldorf, Germany) supported this work.

References

  1. 1.
    Lemos DR, Duffield JS (2018) Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci Transl Med 10(426).  https://doi.org/10.1126/scitranslmed.aan5174
  2. 2.
    Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G (2016) MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 6:29160.  https://doi.org/10.1038/srep29160CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23(6):515–528.  https://doi.org/10.1089/ten.TEB.2016.0365CrossRefPubMedGoogle Scholar
  4. 4.
    Cho J, D'Antuono M, Glicksman M, Wang J, Jonklaas J (2018) A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells 7(4):82–93PubMedPubMedCentralGoogle Scholar
  5. 5.
    Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833.  https://doi.org/10.1016/j.stem.2018.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848.  https://doi.org/10.3727/096368915X689622CrossRefPubMedGoogle Scholar
  7. 7.
    Turnbull MT, Zubair AC, Meschia JF, Freeman WD (2019) Mesenchymal stem cells for hemorrhagic stroke: status of preclinical and clinical research. NPJ Regen Med 4:10.  https://doi.org/10.1038/s41536-019-0073-8CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Borakati A, Mafi R, Mafi P, Khan WS (2018) A systematic review and meta-analysis of clinical trials of mesenchymal stem cell therapy for cartilage repair. Curr Stem Cell Res Ther 13(3):215–225.  https://doi.org/10.2174/1574888X12666170915120620CrossRefPubMedGoogle Scholar
  9. 9.
    Ward MR, Abadeh A, Connelly KA (2018) Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med 7(7):543–550.  https://doi.org/10.1002/sctm.17-0210CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Conese M, Carbone A, Castellani S, Di Gioia S (2013) Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 197(6):445–473.  https://doi.org/10.1159/000348831CrossRefGoogle Scholar
  11. 11.
    De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8(3):73–87.  https://doi.org/10.4252/wjsc.v8.i3.73CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7.  https://doi.org/10.1186/s13287-015-0271-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Klein D (2018) iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 75(8):1411–1433.  https://doi.org/10.1007/s00018-017-2730-7CrossRefPubMedGoogle Scholar
  14. 14.
    Klein D (2016) Vascular wall-resident multipotent stem cells of Mesenchymal nature within the process of vascular remodeling: cellular basis, clinical relevance, and implications for stem cell therapy. Stem Cells Int 2016:1905846.  https://doi.org/10.1155/2016/1905846CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299.  https://doi.org/10.1634/stemcells.2007-1122CrossRefGoogle Scholar
  16. 16.
    Klein D, Hohn HP, Kleff V, Tilki D, Ergun S (2010) Vascular wall-resident stem cells. Histol Histopathol 25(5):681–689.  https://doi.org/10.14670/HH-25.681CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551.  https://doi.org/10.1242/dev.02315CrossRefPubMedGoogle Scholar
  18. 18.
    Klein D, Schmetter A, Imsak R, Wirsdorfer F, Unger K, Jastrow H, Stuschke M, Jendrossek V (2016) Therapy with multipotent Mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal 24(2):53–69.  https://doi.org/10.1089/ars.2014.6183CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Rock K, Yamaguchi M, Wirsdorfer F, Kaiser M, Fischer JW, Stuschke M, Jendrossek V (2017) Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal 26(11):563–582.  https://doi.org/10.1089/ars.2016.6748CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Steens J, Zuk M, Benchellal M, Bornemann L, Teichweyde N, Hess J, Unger K, Gorgens A, Klump H, Klein D (2017) In vitro generation of vascular wall-resident multipotent stem cells of mesenchymal nature from murine induced pluripotent stem cells. Stem Cell Reports 8(4):919–932.  https://doi.org/10.1016/j.stemcr.2017.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R (2014) Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 23(14):1611–1624.  https://doi.org/10.1089/scd.2013.0554CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wagner W, Ho AD (2007) Mesenchymal stem cell preparations--comparing apples and oranges. Stem Cell Rev 3(4):239–248.  https://doi.org/10.1007/s12015-007-9001-1CrossRefPubMedGoogle Scholar
  23. 23.
    Galipeau J (2013) The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8.  https://doi.org/10.1016/j.jcyt.2012.10.002CrossRefPubMedGoogle Scholar
  24. 24.
    Tyndall A (2014) Mesenchymal stem cell treatments in rheumatology: a glass half full? Nat Rev Rheumatol 10(2):117–124.  https://doi.org/10.1038/nrrheum.2013.166CrossRefPubMedGoogle Scholar
  25. 25.
    Ho PJ, Yen ML, Tang BC, Chen CT, Yen BL (2013) H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal 18(15):1895–1905.  https://doi.org/10.1089/ars.2012.4692CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225.  https://doi.org/10.1371/journal.pone.0033225CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17(1):160–170.  https://doi.org/10.1038/sj.leu.2402763CrossRefPubMedGoogle Scholar
  28. 28.
    Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K (2008) Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica 93(10):1457–1465.  https://doi.org/10.3324/haematol.12553CrossRefPubMedGoogle Scholar
  29. 29.
    Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103.  https://doi.org/10.1634/stemcells.2005-0403CrossRefPubMedGoogle Scholar
  30. 30.
    Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426.  https://doi.org/10.1038/nature05159CrossRefPubMedGoogle Scholar
  31. 31.
    Mimeault M, Batra SK (2009) Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res Rev 8(2):94–112.  https://doi.org/10.1016/j.arr.2008.12.001CrossRefPubMedGoogle Scholar
  32. 32.
    Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–47.  https://doi.org/10.1002/stem.727CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533.  https://doi.org/10.1161/CIRCRESAHA.111.256149CrossRefPubMedGoogle Scholar
  34. 34.
    Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports 3(3):414–422.  https://doi.org/10.1016/j.stemcr.2014.07.003CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z (2016) Human iPSCs differentiate into functional MSCs and repair bone defects. Stem Cells Transl Med 5(11):1447–1460.  https://doi.org/10.5966/sctm.2015-0311CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen YS, Pelekanos RA, Ellis RL, Horne R, Wolvetang EJ, Fisk NM (2012) Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem Cells Transl Med 1(2):83–95.  https://doi.org/10.5966/sctm.2011-0022CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Klein D, Benchellal M, Kleff V, Jakob HG, Ergun S (2013) Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep 3:2178.  https://doi.org/10.1038/srep02178CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yamaguchi M (2005) Analysis of neurogenesis using transgenic mice expressing GFP with nestin gene regulatory regions. Chem Senses 30(Suppl 1):i117–i118.  https://doi.org/10.1093/chemse/bjh142CrossRefPubMedGoogle Scholar
  39. 39.
    Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11(9):1991–1996CrossRefGoogle Scholar
  40. 40.
    Stanurova J, Neureiter A, Hiber M, de Oliveira KH, Stolp K, Goetzke R, Klein D, Bankfalvi A, Klump H, Steenpass L (2016) Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing. Sci Rep 6:30792.  https://doi.org/10.1038/srep30792CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Voelkel C, Galla M, Maetzig T, Warlich E, Kuehle J, Zychlinski D, Bode J, Cantz T, Schambach A, Baum C (2010) Protein transduction from retroviral gag precursors. Proc Natl Acad Sci U S A 107(17):7805–7810.  https://doi.org/10.1073/pnas.0914517107CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Warlich E, Kuehle J, Cantz T, Brugman MH, Maetzig T, Galla M, Filipczyk AA, Halle S, Klump H, Scholer HR, Baum C, Schroeder T, Schambach A (2011) Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 19(4):782–789.  https://doi.org/10.1038/mt.2010.314CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ramos-Mejia V, Montes R, Bueno C, Ayllon V, Real PJ, Rodriguez R, Menendez P (2012) Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 7(4):e35824.  https://doi.org/10.1371/journal.pone.0035824CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Muller-Kuller U, Ackermann M, Kolodziej S, Brendel C, Fritsch J, Lachmann N, Kunkel H, Lausen J, Schambach A, Moritz T, Grez M (2015) A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res 43(3):1577–1592.  https://doi.org/10.1093/nar/gkv019CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hoffmann D, Schott JW, Geis FK, Lange L, Muller FJ, Lenz D, Zychlinski D, Steinemann D, Morgan M, Moritz T, Schambach A (2017) Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther 24(5):298–307.  https://doi.org/10.1038/gt.2017.20CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang F, Santilli G, Thrasher AJ (2017) Characterization of a core region in the A2UCOE that confers effective anti-silencing activity. Sci Rep 7(1):10213.  https://doi.org/10.1038/s41598-017-10222-3CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Cell Biology (Cancer Research), Medical FacultyUniversity of Duisburg-EssenEssenGermany
  2. 2.Institute for Transfusion MedicineMedical Faculty, University of Duisburg-EssenEssenGermany
  3. 3.Institute for Cell Biology (Cancer Research), Medical FacultyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations