Computer-Aided Drug Design for the Identification of Novel Antischistosomal Compounds

Part of the Methods in Molecular Biology book series (MIMB, volume 2151)


Schistosomiasis is a chronic neglected tropical disease, highlighted by the presence of Schistosoma worms, which presents in advanced cases in approximately 80 countries, affecting almost 300 million people. The treatment is based on only one drug, praziquantel, a drug discovered in the 1970s that shows moderate efficacy against the adult parasite, but low efficacy against the larval stages of the parasite. Therefore, the use of only one drug has brought concerns and losses on drug-resistance cases, necessitating the development of new effective chemotherapeutic agents against Schistosoma species. One of the strategies that have been implemented in drug development is the computer-aided drug design (CADD), investigating the structural characteristics of the compounds and targets in order to understand their actions and biological activities through 3D virtual manipulation, as the QSAR applied to ligands and molecular docking applied to a respective biological target. These studies help to extract information and characteristics relevant to the activity, as well as to predict potential applications and activity. Therefore, this chapter will present the main validated biological targets of the genus Schistosoma, as thioredoxin glutathione reductase (TGR), histone deacetylases (HDAC 1, HDAC 8), dihydroorotate dehydrogenase, sirtuin protein and cathepsin L1, as well as reports of CADD in literature applied to the development of drugs against schistosomiasis, providing compounds with high pharmacological potential and high specificity.

Key words

Schistosomiasis In silico studies Antischistosomal activity QSAR Docking studies 


  1. 1.
    World Health Organization (2010) First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases.;jsessionid=FB90F2B5E9FB386995329EAE7523301B?sequence=1. Accessed 25 May 2019
  2. 2.
    Colley DG, Bustinduy AL, Secor WE et al (2014) Human schistosomiasis. Lancet 383:2253–2264PubMedPubMedCentralGoogle Scholar
  3. 3.
    World Health Organization (2019) Schistosomiasis. Accessed 20 May 2019
  4. 4.
    Gray DJ, Ross AG, Li YS et al (2011) Diagnosis and management of schistosomiasis. BMJ 342:2651Google Scholar
  5. 5.
    Steinmann P, Keiser J, Bos R et al (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425PubMedGoogle Scholar
  6. 6.
    Amaral RSD, Tauil PL, Lima DD et al (2006) An analysis of the impact of the Schistosomiasis control programme in Brazil [in English]. Mem Inst Oswaldo Cruz 101:79–85PubMedGoogle Scholar
  7. 7.
    Parkin DM (2008) The global burden of urinary bladder cancer. Scand J Urol Nephrol Suppl 42:12–20Google Scholar
  8. 8.
    Kjetland EF, Ndhlovu PD, Gomo E et al (2006) Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20:593–600PubMedGoogle Scholar
  9. 9.
    King CH, Dangerfield-Cha M (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4(1):65–79PubMedGoogle Scholar
  10. 10.
    King CH (2017) The evolving schistosomiasis agenda 2007–2017. Why we are moving beyond morbidity control toward elimination of transmission. PLoS Negl Trop Dis 11(4):e0005517PubMedPubMedCentralGoogle Scholar
  11. 11.
    World Health Organization (2002) Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. Accessed 15 May 2019
  12. 12.
    Valencia CI, Catto BA, Webster LT et al (1994) Concentration time course of praziquantel in Filipinos with mild Schistosoma japonicum infection. Southeast Asian J Trop Med Public Health 25:409–414PubMedGoogle Scholar
  13. 13.
    Xiao S, You J, Mei J et al (1998) In vitro and in vivo effect of levopraziquantel, dextropraziquantel versus racemic praziquantel on different developmental stages of Schistosoma japonicum. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 6(5):335–341Google Scholar
  14. 14.
    Olliaro P, Delgado-Romero P, Keiser J (2014) The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J Antimicrob Chemother 69:863–870PubMedGoogle Scholar
  15. 15.
    Bühring KU, Diekmann HW, Müller H et al (1978) Metabolism of praziquantel in man. Eur J Drug Metab Pharmacokinet 3:179–190Google Scholar
  16. 16.
    Wegner DHG (1984) The profile of the trematodicidal compound praziquantel. Arzneimittelforschung 34:1132–1136PubMedGoogle Scholar
  17. 17.
    Black CL, Steinauer ML, Mwinzi PN et al (2009) Impact of intense, longitudinal retreatment with praziquantel on cure rates of Schistosomiasis mansoni in a cohort of occupationally exposed adults in western Kenya. Tropical Med Int Health 14:450–457Google Scholar
  18. 18.
    N’Goran EK, Gnaka HN, Tanner M et al (2003) Efficacy and side-effects of two praziquantel treatments against Schistosoma haematobium infection, among schoolchildren from cote d’Ivoire. Ann Trop Med Parasitol 97(1):37–51PubMedGoogle Scholar
  19. 19.
    Obonyo CO, Muok EM, Mwinzi PN (2010) Efficacy of artesunate with sulfalene plus pyrimethamine versus praziquantel for treatment of Schistosoma mansoni in Kenyan children: an open-label randomized controlled trial. Lancet Infect Dis 10(9):603–611PubMedGoogle Scholar
  20. 20.
    Erko B, Degarege A, Tadesse K et al (2012) Efficacy and side effects of praziquantel treatment of Schistosomiasis mansoni in Shesha Kekele elementary school, Wondo genet, southern Ethiopia. Asian Pac J Trop Biomed 2(3):235–239PubMedPubMedCentralGoogle Scholar
  21. 21.
    Reta B, Erko B (2013) Efficacy and side effects of praziquantel in the treatment for Schistosoma mansoni infection in school children in Senbete town, northeastern Ethiopia. Tropical Med Int Health 18(11):1338–1343Google Scholar
  22. 22.
    World Health Organization (1998) International Strategies for Tropical Disease Treatment: Experiences with Praziquantel. Edited by Reich, MR. Accessed 15 May 2019
  23. 23.
    Olliare PL, Vaillant MT, Belizario VJ et al (2011) A multicentre randomized controlled trial of the efficacy and safety of single dose praziquantel at 40 mg/kg vs 60 mg/kg for treating intestinal schistosomiasis in the Philippines, Mauritania, Tanzania and Brazil. PLoS Negl Trop Dis 5(6):e1165Google Scholar
  24. 24.
    Cioli D, Pica-Mattoccia L, Archer S (1995) Antischistosomal drugs: past, present… and future? Pharmacol Ther 68:35–85PubMedGoogle Scholar
  25. 25.
    Cioli D, Pica-Mattoccia L, Basso A et al (2014) Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol 195:23–29PubMedGoogle Scholar
  26. 26.
    Sun Q, Mao R, Wang D et al (2016) The cytotoxicity study of praziquantel enantiomers. Drug Des Devel Ther 10:2061PubMedPubMedCentralGoogle Scholar
  27. 27.
    Almeida AP, Mendes T, Ferreira P et al (2018) Comparative proteomics reveals characteristic proteins on praziquantel-resistance in Schistosoma mansoni. BioRxiv, 314724Google Scholar
  28. 28.
    World Health Organization (2006) Preventive chemotherapy in human helminthiasis. Coordinated use of antihelminthic drugs in control interventions: a manual for health professionals and programme managers. Accessed 14 May 2019
  29. 29.
    World Health Organization (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases. Second WHO report on neglected tropical diseases. Accessed 14 May 2019
  30. 30.
    Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90:3–9Google Scholar
  31. 31.
    Ferrari ML, Coelho PM, Antunes CM et al (2003) Efficacy of oxamniquine and praziquantel in the treatment of Schistosoma mansoni infection: a controlled trial. Bull World Health Organ 81(3):190–196PubMedPubMedCentralGoogle Scholar
  32. 32.
    Utzinger J, N'Goran EK, N'Dri A et al (2000) Oral artemether for prevention of Schistosoma mansoni infection: randomized controlled trial. Lancet 355(9212):1320–1325PubMedGoogle Scholar
  33. 33.
    Araujo N, Kohn A, Katz N (1991) Activity of the artemether in experimental Schisosomiasis mansoni. Mem Inst Oswaldo Cruz 86(Suppl 2):185–188PubMedGoogle Scholar
  34. 34.
    Issoko MS, Dabo A, Traore H et al (2009) Efficacy of artesunate + sulfamethoxypyrazine/pyrimethamine versus praziquantel in the treatment of Schistosoma haematobium in children. PLoS One 4(10):e6732Google Scholar
  35. 35.
    Hou XY, McManus DP, Gray DJ et al (2008) A randomized double-blind placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute Schistosomiasis japonica in China. Bull World Health Organ 86(10):788–795PubMedPubMedCentralGoogle Scholar
  36. 36.
    Utzinger J, Tanner M, Keiser J (2010) ACTs for schistosomiasis: do they act? Lancet Infect Dis 10(9):579–581PubMedGoogle Scholar
  37. 37.
    Gray DJ, Ross AG, Li YS (2011) Diagnosis and management of schistosomiasis. BMJ 342:2651Google Scholar
  38. 38.
    Ross AG, McManus DP, Farrar J et al (2012) Neuroschistosomiasis. J Neurol 259(1):22–32PubMedGoogle Scholar
  39. 39.
    Fowler R, Lee C, Keystone JS et al (1999) The role of corticosteroids in the treatment of cerebral schistosomiasis caused by Schistosoma mansoni: case report and discussion. Am J Trop Med Hyg 61(1):47–50PubMedGoogle Scholar
  40. 40.
    Lambertucci JR, Voieta I, Silveira IS (2008) Cerebral schistosomiasis mansoni. Rev Soc Bras Med Trop 41(6):693–694PubMedGoogle Scholar
  41. 41.
    World Health Organization (2016) Schistosomiasis: number of people treated in 2014. Wkly Epidemiol Rec 89(4):21–28. Accessed 15 May 2019Google Scholar
  42. 42.
    Weigelt J (2010) Structural genomics – impact on biomedicine and drug discovery. Exp Cell Res 316(8):1332–1338PubMedGoogle Scholar
  43. 43.
    Kumar S, Jena L, Daf S et al (2013) hpvPDB: an online proteome reserve for human papillomavirus. Genomics Inform 11(4):289–291PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(1):1100–1107Google Scholar
  45. 45.
    Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:36–42Google Scholar
  46. 46.
    Wilson GL, Lill MA (2011) Integrating structure-based and ligand-based approaches for computational drug design. Future Med Chem 3(6):735–750PubMedGoogle Scholar
  47. 47.
    Blaney J (2012) A very short history of structure-based design: how did we get here and where do we need to go? J Comput Aided Mol Des 26(1):13–14PubMedGoogle Scholar
  48. 48.
    Lionta E, Spyrou G, Vassilatis DK et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938PubMedPubMedCentralGoogle Scholar
  49. 49.
    Valasani KR, Vangavaragu JR, Day VW et al (2014) Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. J Chem Inf Model 54(3):902–912PubMedPubMedCentralGoogle Scholar
  50. 50.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242PubMedPubMedCentralGoogle Scholar
  51. 51.
    Leach AR, Gillet VJ, Lewis RA et al (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53(2):539–558PubMedGoogle Scholar
  52. 52.
    Mittal A, Paliwal S, Sharma M et al (2014) Pharmacophore based virtual screening, molecular docking and biological evaluation to identify novel PDE5 inhibitors with vasodilatory activity. Bioorg Med Chem Lett 24(14):3137–3141PubMedGoogle Scholar
  53. 53.
    Mavromoustakos T, Durdagi S, Koukoulitsa C et al (2011) Strategies in the rational drug design. Curr Med Chem 18(17):2517–2530PubMedGoogle Scholar
  54. 54.
    Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang Y, Xiao J, Suzek TO (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Suppl. 2):623–633Google Scholar
  56. 56.
    Berriman M, Haas BJ, LoVerde PT et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460(7253):352PubMedPubMedCentralGoogle Scholar
  57. 57.
    Brindley PJ, Pearce EJ (2007) Genetic manipulation of schistosomes. Int J Parasitol 37(5):465–473PubMedGoogle Scholar
  58. 58.
    Young ND, Jex AR, Li B et al (2012) Whole-genome sequence of Schistosoma haematobium. Nat Genet 44(2):221PubMedGoogle Scholar
  59. 59.
    Zerlotini A, Heiges M, Wang H et al (2008) SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 37(suppl 1):579–582Google Scholar
  60. 60.
    Rojo-Arreola L, Long T, Asarnow D et al (2014) Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS One 9(1):e87594PubMedPubMedCentralGoogle Scholar
  61. 61.
    Marek M, Kannan S, Hauser AT et al (2013) Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog 9:e1003645PubMedPubMedCentralGoogle Scholar
  62. 62.
    Song L, Li J, Xie S et al (2012) Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum. PLoS One 7(2):e31456PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sharma M, Khanna S, Bulusu G et al (2010) Corrigendum to comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal drug discovery. J Mol Graph Model 27:665–675Google Scholar
  64. 64.
    Angelucci F, Miele AE, Boumis G et al (2008) Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase. Proteins 72(3):936–945PubMedGoogle Scholar
  65. 65.
    Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL et al (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4(6):e206PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sayed AA, Simeonov A, Thomas CJ et al (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14(4):407PubMedPubMedCentralGoogle Scholar
  67. 67.
    Li T, Ziniel PD, He PQ et al (2015) High-throughput screening against thioredoxin glutathione reductase identifies novel inhibitors with potential therapeutic value for schistosomiasis. Infect Dis Poverty 4(1):40PubMedPubMedCentralGoogle Scholar
  68. 68.
    Angelucci F, Sayed AA, Williams DL (2009) Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin structural and kinetic aspects. J Biol Chem 284(42):28977–28985PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395PubMedPubMedCentralGoogle Scholar
  70. 70.
    Oger F, Dubois F, Caby S et al (2008) The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 377:1079–1084PubMedGoogle Scholar
  71. 71.
    Dubois F, Caby S, Oger F et al (2009) Histone deacetylase inhibitors induce apoptosis, histone hyperacetylation and up-regulation of gene transcription in Schistosoma mansoni. Mol Biochem Parasitol 168:7–15PubMedGoogle Scholar
  72. 72.
    Serrão VHB, Pereira HD, de Souza JRT et al (2017) Schistosoma mansoni purine and pyrimidine biosynthesis: structures and kinetic experiments in the search for the best therapeutic target. Curr Pharm Des 23(45):6967–6983Google Scholar
  73. 73.
    Zeraik AE, Serrão VHB, Romanello L et al (2017) Schistosoma mansoni displays an adenine phosphoribosyltransferase preferentially expressed in mature female gonads and vitelaria. Mol Biochem Parasitol 214:82–86PubMedGoogle Scholar
  74. 74.
    El Kouni MH (2017) Pyrimidine metabolism in schistosomes: a comparison with other parasites and the search for potential chemotherapeutic targets. Comp Biochem Physiol B Biochem Mol Biol 213:55–80PubMedPubMedCentralGoogle Scholar
  75. 75.
    Serrão VH, Romanello L, Cassago A et al (2017) Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase. Acta Trop 170:190–196PubMedGoogle Scholar
  76. 76.
    Reis RA, Calil FA, Feliciano PR et al (2017) The dihydroorotate dehydrogenases: past and present. Arch Biochem Biophys 632:175–191Google Scholar
  77. 77.
    Bader B, Knecht W, Fries M et al (1998) Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase. Protein Expr Purif 13(3):414–422PubMedGoogle Scholar
  78. 78.
    Hortua MT, Huynh MH, Garavito MF et al (2012) Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from toxoplasma gondii. Mol Biochem Parasitol 184(2):71–81Google Scholar
  79. 79.
    Vyas VK, Ghate M (2011) Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Rev Med Chem 11(12):1039–1055PubMedGoogle Scholar
  80. 80.
    Loeffler M, Carrey EA, Zameitat E (2015) Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. J Genet Genomics 42(5):207–219Google Scholar
  81. 81.
    Religa AA, Waters AP (2012) Sirtuins of parasitic protozoa: in search of function (s). Mol Biochem Parasitol 185(2):71–88PubMedPubMedCentralGoogle Scholar
  82. 82.
    Vergnes B, Sereno D, Madjidian-Sereno N et al (2002) Cytoplasmic SIR2 homologue overexpression promotes survival of Leishmania parasites by preventing programmed cell death. Gene 296(1–2):139–150PubMedGoogle Scholar
  83. 83.
    Lara E, Mai A, Calvanese V et al (2009) Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(6):781PubMedGoogle Scholar
  84. 84.
    Nonato MC, de Pádua RA, David JS, RAG R et al (2019) Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie 158:180–190PubMedGoogle Scholar
  85. 85.
    Smith AM, Dalton JP, Clough KA et al (1994) Adult Schistosoma mansoni express cathepsin L proteinase activity. Mol Biochem Parasitol 67(1):11–19PubMedGoogle Scholar
  86. 86.
    Brady CP, Dowd AJ, Brindley PJ et al (1999) Recombinant expression and localization of Schistosoma mansoni cathepsin L1 support its role in the degradation of host haemoglobin. Infect Immun 67:368–374PubMedPubMedCentralGoogle Scholar
  87. 87.
    Dalton JP, Smith AM, Clough KA et al (1995) Digestion of haemoglobin by schistosomes: 35 years on. Parasitol Today 11:299–303PubMedGoogle Scholar
  88. 88.
    Dalton JP, Clough KA, Jones MK et al (1996) Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni. Infect Immun 64:1328–1334PubMedPubMedCentralGoogle Scholar
  89. 89.
    McKerrow JH, Doenhoff MJ (1988) Schistosome proteases. Parasitol Today 4:334–340PubMedGoogle Scholar
  90. 90.
    Clark DE, Picket SD (2000) Computational methods for the prediction of ‘drug-likeness’. Drug Discov Today 5(2):49–58PubMedGoogle Scholar
  91. 91.
    Scott DE, Bayly AR, Abell C et al (2016) Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 15(8):533PubMedGoogle Scholar
  92. 92.
    Gaba S, Jamal S, Scaria V, Drug Discovery Consortium (2014) Cheminformatics models for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase. Sci World J 2014:957107Google Scholar
  93. 93.
    Kannan S, Melesina J, Hauser AT et al (2014) Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model 54(10):3005–3019PubMedGoogle Scholar
  94. 94.
    Melo-Filho CC, Dantas RF, Braga RC et al (2016) QSAR-driven discovery of novel chemical scaffolds active against Schistosoma mansoni. J Chem Inf Model 56(7):1357–1372PubMedPubMedCentralGoogle Scholar
  95. 95.
    Otarigho B (2019) Structural, functional and docking analysis against Schistosoma mansoni dihydroorotate dehydrogenase for potential chemotherapeutic drugs. F1000 Res 8:651Google Scholar
  96. 96.
    Simoben C, Robaa D, Chakrabarti A et al (2018) A novel class of Schistosoma mansoni histone deacetylase 8 (HDAC8) inhibitors identified by structure-based virtual screening and in vitro testing. Molecules 23(3):566PubMedCentralGoogle Scholar
  97. 97.
    Singh R, Pandey PN (2015) Molecular docking and molecular dynamics study on SmHDAC1 to identify potential lead compounds against Schistosomiasis. Mol Biol Rep 42(3):689–698PubMedGoogle Scholar
  98. 98.
    Singh R, Singh S, Pandey PN (2016) In-silico analysis of sirt2 from Schistosoma mansoni: structures, conformations, and interactions with inhibitors. J Biomol Struct Dyn 34(5):1042–1051PubMedGoogle Scholar
  99. 99.
    Singh R, Yadav BS, Singh S et al (2016) In-silico screening of Schistosoma mansoni Sirtuin1 inhibitors for prioritization of drug candidates. Springerplus 5(1):286PubMedPubMedCentralGoogle Scholar
  100. 100.
    Zafar A, Ahmad S, Rizvi A et al (2015) Novel non-peptide inhibitors against SmCL1 of Schistosoma mansoni: in silico elucidation, implications and evaluation via knowledge-based drug discovery. PLoS One 10(5):e0123996PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Federal University of Paraíba, Health CenterJoão PessoaBrazil

Personalised recommendations