Advertisement

Cyclodextrins for Probing Plasma Membrane Lipids

  • Amid Vahedi
  • Amir M. FarnoudEmail author
Protocol
  • 29 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Cyclodextrins are cyclic molecules with a hydrophilic external structure and a hydrophobic internal cavity. Due to their chemical structure, cyclodextrins can form complexes with hydrophobic or amphiphilic molecules, including lipids. This property has resulted in the widespread use of cyclodextrins for characterization and manipulation of lipids in biological membranes. In this chapter, the use of cyclodextrins for characterization of lipids in the cell plasma membrane is discussed. First, the chemical structure of different cyclodextrins is explained. Then, the current knowledge on the mechanisms of cyclodextrin–lipid interaction and the role of cyclodextrin and lipid chemical structure in the outcome of such interactions is summarized. The use of cyclodextrins for manipulation of plasma membrane lipids and its application to study membrane lipid rafts is also reviewed. Finally, future directions in the field and current opportunities to utilize cyclodextrins to provide a better understanding of the composition and organization of lipids in the plasma membrane are discussed.

Keywords

Cyclodextrin Cholesterol Phospholipids Plasma membrane Lipid rafts 

Nomenclature

CD

Cyclodextrin

CEγCD

Carboxyethylated-γCD

DMβCD

Dimethyl-β-cyclodextrin

DMPC

Dimyristoyl phosphocholine

DPPC

Dipalmitoyl phosphatidylcholine

DPPE

Dipalmitoyl phosphoethanolamine

DSPC

Distearoyl phosphocholine

GUV

Giant unilamellar vesicle

HPαCD

Hydroxypropylated-αCD

HPβCD

Hydroxypropyl-βCD

LUV

Large unilamellar vesicle

MβCD

Methyl-β-cyclodextrin

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PI

Phosphatidylinositol

PS

Phosphatidylserine

POPC

1-Palmitoyl-2-oleoyl-glycero-3-phosphocholine

SM

Sphingomyelin

SUV

Small unilamellar vesicles

TMβCD

Trimethyl-β-cyclodextrin

Notes

Acknowledgment

This work was supported by the NIH award R15ES030140 to AF.

References

  1. 1.
    Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754PubMedGoogle Scholar
  2. 2.
    Bender ML, Komiyama M (2012) Cyclodextrin chemistry, vol 6. Springer Science & Business Media, BerlinGoogle Scholar
  3. 3.
    Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035PubMedGoogle Scholar
  4. 4.
    Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38(11):2264–2272PubMedGoogle Scholar
  5. 5.
    Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768(6):1311–1324PubMedPubMedCentralGoogle Scholar
  6. 6.
    Pitha J, Irie T, Sklar PB, Nye JS (1988) Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci 43(6):493–502PubMedGoogle Scholar
  7. 7.
    Jin Z-Y (2013) Cyclodextrin chemistry: preparation and application. World Scientific, SingaporeGoogle Scholar
  8. 8.
    Shieh WJ, Hedges A (1996) Properties and applications of cyclodextrins. J Macromol Sci A Pure Appl Chem 33(5):673–683Google Scholar
  9. 9.
    Hammoud Z, Khreich N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76PubMedGoogle Scholar
  10. 10.
    Uekama K (2004) Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull (Tokyo) 52(8):900–915Google Scholar
  11. 11.
    Szente L, Fenyvesi E (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28(2):479–492Google Scholar
  12. 12.
    Ravichandran R, Divakar S (1998) Inclusion of ring a of cholesterol inside the β-cyclodextrin cavity: evidence from oxidation reactions and structural studies. J Incl Phenom Mol Recognit Chem 30(3):253–270Google Scholar
  13. 13.
    Yu Y, Chipot C, Cai W, Shao X (2006) Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. J Phys Chem B 110(12):6372–6378PubMedGoogle Scholar
  14. 14.
    Loftsson T, Magnúsdóttir A, Másson M, Sigurjónsdóttir JF (2002) Self-association and cyclodextrin solubilization of drugs. J Pharm Sci 91(11):2307–2316PubMedGoogle Scholar
  15. 15.
    López CA, de Vries AH, Marrink SJ (2011) Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol 7(3):e1002020PubMedPubMedCentralGoogle Scholar
  16. 16.
    Phillips MC, Johnson WJ, Rothblat GH (1987) Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 906(2):223–276PubMedGoogle Scholar
  17. 17.
    Denz M, Haralampiev I, Schiller S, Szente L, Herrmann A, Huster D, Müller P (2016) Interaction of fluorescent phospholipids with cyclodextrins. Chem Phys Lipids 194:37–48PubMedGoogle Scholar
  18. 18.
    Szejtli J, Cserhati T, Szögyi M (1986) Interactions between cyclodextrins and cell-membrane phospholipids. Carbohydr Polym 6(1):35–49Google Scholar
  19. 19.
    Sanemasa I, Osajima T, Deguchi T (1990) Association of C5–C9 normal alkanes with cyclodextrins in aqueous medium. B Chem Soc Jpn 63(10):2814–2819Google Scholar
  20. 20.
    Tanhuanpää K, Cheng KH, Anttonen K, Virtanen JA, Somerharju P (2001) Characteristics of pyrene phospholipid/γ-cyclodextrin complex. Biophys J 81(3):1501–1510PubMedPubMedCentralGoogle Scholar
  21. 21.
    Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-β-cyclodextrin. Biochemistry 43(8):2251–2261PubMedGoogle Scholar
  22. 22.
    Nishijo J, Shiota S, Mazima K, Inoue Y, Mizuno H, Yoshida J (2000) Interactions of cyclodextrins with dipalmitoyl, distearoyl, and dimyristoyl phosphatidyl choline liposomes. A study by leakage of carboxyfluorescein in inner aqueous phase of unilamellar liposomes. Chem Pharm Bull (Tokyo) 48(1):48–52Google Scholar
  23. 23.
    Fauvelle F, Debouzy JC, Crouzy S, Göschl M, Chapron Y (1997) Mechanism of α-cyclodextrin-lnduced hemolysis. 1. The two-step extraction of phosphatidylinositol from the membrane. J Pharm Sci 86(8):935–943PubMedGoogle Scholar
  24. 24.
    Debouzy JC, Fauvelle F, Crouzy S, Girault L, Chapron Y, Göschl M, Gadelle A (1998) Mechanism of α-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J Pharm Sci 87(1):59–66PubMedGoogle Scholar
  25. 25.
    Fauvelle F, Debouzy JC, Nardin R, Gadelle A (1994) Nuclear magnetic resonance study of a polar headgroup determined α-cyclodextrin-phospholipid association. Bioelectrochem Bioenerg 33(1):95–99Google Scholar
  26. 26.
    Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F (2016) Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules 21(12):E1748PubMedGoogle Scholar
  27. 27.
    Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598PubMedGoogle Scholar
  28. 28.
    Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270(29):17250–17256PubMedGoogle Scholar
  29. 29.
    Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, Rothblat GH (1996) Cellular cholesterol efflux mediated by cyclodextrins demonstration of kinetic pools and mechanism of efflux. J Biol Chem 271(27):16026–16034PubMedGoogle Scholar
  30. 30.
    Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J 83(4):2118–2125PubMedPubMedCentralGoogle Scholar
  31. 31.
    Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC (1999) Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 40(5):781–796PubMedGoogle Scholar
  32. 32.
    Litz JP, Thakkar N, Portet T, Keller SL (2016) Depletion with cyclodextrin reveals two populations of cholesterol in model lipid membranes. Biophys J 110(3):635–645PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C (2006) Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal 18(1):105–122PubMedGoogle Scholar
  34. 34.
    Hao M, Lin SX, Karylowski OJ, Wüstner D, McGraw TE, Maxfield FR (2002) Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 277(1):609–617PubMedGoogle Scholar
  35. 35.
    Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100(10):5813–5818PubMedGoogle Scholar
  36. 36.
    Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295PubMedGoogle Scholar
  37. 37.
    Scheiffele P, Rietveld A, Wilk T, Simons K (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274(4):2038–2044PubMedGoogle Scholar
  38. 38.
    Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4):470–477PubMedGoogle Scholar
  39. 39.
    López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 3:2071PubMedPubMedCentralGoogle Scholar
  40. 40.
    Rodríguez-Acebes S, de la Cueva P, Fernández-Hernando C, Ferruelo AJ, Lasunción MA, Rawson RB, Martínez-Botas J, Gómez-Coronado D (2009) Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Δ24-reductase-deficient cell line. Biochem J 420(2):305–318PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim JH, Singh A, Del Poeta M, Brown DA, London E (2017) The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 130(16):2682–2695PubMedPubMedCentralGoogle Scholar
  42. 42.
    Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT (2019) Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochim Biophys Acta Biomembr 1861(4):819–826PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β-and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186(1–2):17–22PubMedGoogle Scholar
  44. 44.
    Motoyama K, Arima H, Toyodome H, Irie T, Hirayama F, Uekama K (2006) Effect of 2, 6-di-O-methyl-α-cyclodextrin on hemolysis and morphological change in rabbit’s red blood cells. Eur J Pharm Sci 29(2):111–119PubMedGoogle Scholar
  45. 45.
    Tanhuanpää K, Somerharju P (1999) γ-Cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J Biol Chem 274(50):35359–35366PubMedGoogle Scholar
  46. 46.
    Huang Z, London E (2013) Effect of cyclodextrin and membrane lipid structure upon cyclodextrin–lipid interaction. Langmuir 29(47):14631–14638PubMedGoogle Scholar
  47. 47.
    Lin Q, London E (2014) Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 9(1):e87903PubMedPubMedCentralGoogle Scholar
  48. 48.
    Clair JWS, London E (2019) Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochim Biophys Acta Biomembr 1861(6):1112–1122Google Scholar
  49. 49.
    Cheng HT, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284(10):6079–6092PubMedPubMedCentralGoogle Scholar
  50. 50.
    Son M, London E (2013) The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. J Lipid Res 54(1):223–231PubMedPubMedCentralGoogle Scholar
  51. 51.
    Son M, London E (2013) The dependence of lipid asymmetry upon polar headgroup structure. J Lipid Res 54(12):3385–3393PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kainu V, Hermansson M, Somerharju P (2008) Electrospray ionization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling. J Biol Chem 283(6):3676–3687PubMedGoogle Scholar
  53. 53.
    Kainu V, Hermansson M, Somerharju P (2010) Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 51(12):3533–3541PubMedPubMedCentralGoogle Scholar
  54. 54.
    Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E (2016) Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci USA 113(49):14025–14030PubMedGoogle Scholar
  55. 55.
    Szente L, Singhal A, Domokos A, Song B (2018) Cyclodextrins: assessing the impact of cavity size, occupancy, and substitutions on cytotoxicity and cholesterol homeostasis. Molecules 23(5):E1228PubMedGoogle Scholar
  56. 56.
    Irie T, Otagiri M, Sunada M, Uekama K, Ohtani Y, Yamada Y, Sugiyama Y (1982) Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J Pharmacobiodyn 5(9):741–744PubMedGoogle Scholar
  57. 57.
    Hinzey AH, Kline MA, Kotha SR, Sliman SM, Butler ES, Shelton AB, Gurney TR, Parinandi NL (2012) Choice of cyclodextrin for cellular cholesterol depletion for vascular endothelial cell lipid raft studies: cell membrane alterations, cytoskeletal reorganization and cytotoxicity. Indian J Biochem Biophys 49(5):329–341PubMedGoogle Scholar
  58. 58.
    Kiss T, Fenyvesi F, Bácskay I, Váradi J, Fenyvesi E, Iványi R, Szente L, Tósaki A, Vecsernyés M (2010) Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40(4):376–380PubMedGoogle Scholar
  59. 59.
    Róka E, Ujhelyi Z, Deli M, Bocsik A, Fenyvesi É, Szente L, Fenyvesi F, Vecsernyés M, Váradi J, Fehér P, Gesztelyi R, Félix C, Perret F, Bácskay IK (2015) Evaluation of the cytotoxicity of α-cyclodextrin derivatives on the caco-2 cell line and human erythrocytes. Molecules 20(11):20269–20285PubMedPubMedCentralGoogle Scholar
  60. 60.
    Leroy-Lechat F, Wouessidjewe D, Andreux J-P, Puisieux F, Duchêne D (1994) Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int J Pharm 101(1–2):97–103Google Scholar
  61. 61.
    Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III Toxicological issues and safety evaluation. J Pharm Sci 86(2):147–162PubMedGoogle Scholar
  62. 62.
    LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9(5):e1003353PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringOhio UniversityAthensUSA

Personalised recommendations