Advertisement

Lipid Regulation in Pathogenic Fungi

  • Tejas BouklasEmail author
  • Mansa Munshi
  • Maurizio Del Poeta
  • Bettina C. Fries
Protocol
  • 27 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Much of the current research on lipids points to their role in regulating the infectious disease process of pathogenic microorganisms. This is particularly important in the case of sterols, which vary among the major pathogenic fungi and contribute differentially to their susceptibility to antifungals. Unfortunately, studies of such pathogenic fungi are limiting, from incomplete lipid extraction and analysis. In addition to challenges posed by mutant collections of pathogenic fungi, including Cryptococcus neoformans and Candida spp., fungal characteristics, such as encapsulation or biofilm formation, further complicate studies. This chapter outlines successful modifications made to traditional methods for such fungal pathogens.

Keywords

Lipids Sterols Azoles Extraction Pathogen Fungi Cryptococcus Candida 

References

  1. 1.
    Dickson RC, Lester RL (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583(1):13–25.  https://doi.org/10.1016/s1388-1981(02)00210-xCrossRefPubMedGoogle Scholar
  2. 2.
    Noverr MC, Erb-Downward JR, Huffnagle GB (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16(3):517–533.  https://doi.org/10.1128/cmr.16.3.517-533.2003CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hanada K (2005) Sphingolipids in infectious diseases. Jpn J Infect Dis 58(3):131–148PubMedGoogle Scholar
  4. 4.
    Pierce AM, Pierce HD Jr, Unrau AM, Oehlschlager AC (1978) Lipid composition and polyene antibiotic resistance of Candida albicans mutants. Can J Biochem 56(2):135–142CrossRefGoogle Scholar
  5. 5.
    Brennan PJ, Losel DM (1978) Physiology of fungal lipids: selected topics. Adv Microb Physiol 17:47–179CrossRefGoogle Scholar
  6. 6.
    Rattray JB, Schibeci A, Kidby DK (1975) Lipids of yeasts. Bacteriol Rev 39(3):197–231CrossRefGoogle Scholar
  7. 7.
    Bouklas T, Alonso-Crisostomo L, Szekely T Jr, Diago-Navarro E, Orner EP, Smith K et al (2017) Generational distribution of a Candida glabrata population: resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog 13(5):e1006355.  https://doi.org/10.1371/journal.ppat.1006355CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bouklas T, Pechuan X, Goldman DL, Edelman B, Bergman A, Fries BC (2013) Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis. MBio 4(4).  https://doi.org/10.1128/mBio.00455-13
  9. 9.
    Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A et al (2018) Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 14(5):e1007007.  https://doi.org/10.1371/journal.ppat.1007007CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hitchcock CA, Barrett-Bee KJ, Russell NJ (1986) The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol 132(9):2421–2431.  https://doi.org/10.1099/00221287-132-9-2421CrossRefPubMedGoogle Scholar
  11. 11.
    Hitchcock CA, Barrett-Bee KJ, Russell NJ (1987) The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol 25(1):29–37CrossRefGoogle Scholar
  12. 12.
    Munshi MA, Gardin JM, Singh A, Luberto C, Rieger R, Bouklas T et al (2018) The role of ceramide synthases in the pathogenicity of Cryptococcus neoformans. Cell Rep 22(6):1392–1400.  https://doi.org/10.1016/j.celrep.2018.01.035CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fries BC, Casadevall A (1998) Serial isolates of Cryptococcus neoformans from patients with AIDS differ in virulence for mice. J Infect Dis 178(6):1761–1766.  https://doi.org/10.1086/314521CrossRefPubMedGoogle Scholar
  14. 14.
    Singh A, Yadav V, Prasad R (2012) Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS One 7(6):e39812.  https://doi.org/10.1371/journal.pone.0039812CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB et al (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48(5):349–356CrossRefGoogle Scholar
  16. 16.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917.  https://doi.org/10.1139/o59-099CrossRefGoogle Scholar
  17. 17.
    Singh A, Qureshi A, Del Poeta M (2011) Quantitation of cellular components in Cryptococcus neoformans for system biology analysis. Methods Mol Biol 734:317–333.  https://doi.org/10.1007/978-1-61779-086-7_16CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hanson BA, Lester RL (1980) The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res 21(3):309–315PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Tejas Bouklas
    • 1
    Email author
  • Mansa Munshi
    • 2
  • Maurizio Del Poeta
    • 2
    • 3
    • 4
  • Bettina C. Fries
    • 2
    • 3
    • 4
  1. 1.Department of Biological SciencesState University of New York College at Old WestburyOld WestburyUSA
  2. 2.Department of Molecular Genetics and MicrobiologyStony Brook UniversityStony BrookUSA
  3. 3.Veterans Administration Medical CenterNorthportUSA
  4. 4.Department of Medicine, Division of Infectious DiseasesStony Brook UniversityStony BrookUSA

Personalised recommendations