Advertisement

CRISPR-Cas-Mediated Single Base Editing at More than One Locus in Rice Genome

  • Kutubuddin A. Molla
  • Yinong YangEmail author
Protocol
  • 28 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Base editing is a recently developed technology that enables us to install point mutation in the genome precisely. The fusion of nucleotide deaminase with Cas9 nickase gives rise to base editors. Like the conventional CRISPR-Cas9 technology, a single-guide RNA can direct a base editor to a particular locus to change one nucleotide to another. In this chapter, we describe a stepwise protocol to perform targeted base editing experiments in rice plants.

Key words

CRISPR-Cas9 Base editing Point mutation Rice genome editing Adenine base editors Crop improvement 

Abbreviations

ABE

Adenine base editor

BE

Base editor

CBE

Cytosine base editor

D10A

Aspartic acid 10 alanine

HDR

Homology-directed repair

nCas9

Nickase Cas9

NHEJ

Nonhomologous end joining

PAM

Protospacer adjacent motif

TadA

tRNA adenosine deaminase

References

  1. 1.
    Molla KA, Yang Y (2019a) Predicting CRISPR/Cas-induced mutations for precise genome editing. Trends Biotechnol 38:136.  https://doi.org/10.1016/j.tibtech.2019.08.002CrossRefPubMedGoogle Scholar
  2. 2.
    Molla KA, Yang Y (2019b) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–1142CrossRefGoogle Scholar
  3. 3.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420CrossRefGoogle Scholar
  4. 4.
    Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729CrossRefGoogle Scholar
  5. 5.
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464CrossRefGoogle Scholar
  6. 6.
    Molla KA, Shih J, Yang Y (2020) Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH. https://doi.org/10.1007/s42994-020-00018-xGoogle Scholar
  7. 7.
    Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575CrossRefGoogle Scholar
  8. 8.
    Molla KA, Debnath AB, Ganie SA, Mondal TK (2015) Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biol 15(1):122CrossRefGoogle Scholar
  9. 9.
    Minkenberg B, Zhang J, Xie K, Yang Y (2019) CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnol J 17(1):5PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Crop Improvement DivisionNational Rice Research InstituteCuttackIndia
  2. 2.Department of Plant Pathology and Environmental MicrobiologyThe Huck Institute of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations