Advertisement

Homology-Directed Transgene-Free Gene Editing in Chlamydomonas reinhardtii

  • Aron Ferenczi
  • Attila MolnarEmail author
Protocol
  • 31 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Chlamydomonas reinhardtii is a microalgal model organism with a suite of molecular and genetic techniques, but routine editing of its nuclear genome is yet to be realized. DNA-based transformation techniques are prohibitively inefficient and lead to predominantly nonhomologous (i.e. off-target) integration. Standard CRISPR-based gene editing protocols have proved too ineffective to enable routine application. We have found that the use of CRISPR-Cpf1 in conjunction with single-stranded DNA (ssODN) repair templates achieves nuclear gene editing efficiencies as high as 20% as a proportion of total cells (Ferenczi et al. Proc Natl Acad Sci U S A 114:13567–13572, 2017). This produces edits with predictable outcomes in a transgene- and selection marker-free manner. The possibility to purchase all necessary reagents commercially with no preparation time (besides design) facilitates rapid and routine genetic engineering in this organism. Here we describe the use of this technique to knockout locus FKB12, which leads to rapamycin resistance and lends itself to an easy assay when adopting this gene-editing protocol.

Key words

CRISPR Cpf1 Chlamydomonas reinhardtii ssODN Homology-directed repair (HDR) 

Notes

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) PHYCONET Proof of Concept Fund, Grant PHYCPoC-31. A.F. was supported by the BBSRC East of Scotland BioScience (EASTBIO) National Productivity Investment Fund (NPIF) Industrial Cooperative Awards in Science & Technology (CASE) studentship BB/R505493/1.We thank Prof Andrew Hudson and Dr. Anja Hemschemeier for reviewing the manuscript.

References

  1. 1.
    Salomé PA, Merchant SS (2019) A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31(8):1682–1707.  https://doi.org/10.1105/tpc.18.00952CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26(5–6):438–442.  https://doi.org/10.1007/BF00309931CrossRefPubMedGoogle Scholar
  3. 3.
    Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 90(19):9199–9203.  https://doi.org/10.1073/pnas.90.19.9199CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014) High-throughput genotyping of Green Algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26(4):1398–1409.  https://doi.org/10.1105/tpc.114.124099CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9(6):925–945.  https://doi.org/10.1105/tpc.9.6.925CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145(1):97–110PubMedPubMedCentralGoogle Scholar
  7. 7.
    Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469.  https://doi.org/10.1128/EC.00213-14CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882.  https://doi.org/10.1111/tpj.12066CrossRefPubMedGoogle Scholar
  9. 9.
    Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via Zinc-finger nucleases and CRISPR/Cas9. Plant Cell.  https://doi.org/10.1105/tpc.17.00659
  10. 10.
    Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810.  https://doi.org/10.1038/srep27810CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620.  https://doi.org/10.1038/srep30620CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jeong J, Baek K, Yu J, Kirst H, Betterle N, Shin W, Bae S, Melis A, Jin E (2018) Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii. J Exp Bot 69(5):1147–1158.  https://doi.org/10.1093/jxb/erx457CrossRefPubMedGoogle Scholar
  13. 13.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci U S A 114(51):13567–13572.  https://doi.org/10.1073/pnas.1710597114CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4):1736–1749.  https://doi.org/10.1104/pp.105.070847CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54(6):1665–1669.  https://doi.org/10.1073/pnas.54.6.1665CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hutner SH, Provasoli L, Schatz A, Haskins CP (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94(2):152–170Google Scholar
  18. 18.
    Harris EH, Stern DB, Witman GB (2009) The Chlamydomonas sourcebook, 2nd edn. Academic Press, San DiegoGoogle Scholar
  19. 19.
    Yu J, Baek K, Jin E, Bae S (2017) DNA-free genome editing of Chlamydomonas reinhardtii using CRISPR and subsequent mutant analysis. Bio-Protocol 7(11):e2352.  https://doi.org/10.21769/BioProtoc.2352CrossRefGoogle Scholar
  20. 20.
    Mohanraju P, van der Oost J, Jinek M, Swartz DC (2018) Heterologous expression and purification of CRISPR-Cas12a/Cpf1. Bio-Protocol 8(9):1–23.  https://doi.org/10.21769/BioProtoc.2842CrossRefGoogle Scholar
  21. 21.
    Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 14(2):153–159.  https://doi.org/10.1038/nmeth.4104CrossRefPubMedGoogle Scholar
  22. 22.
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186.  https://doi.org/10.1093/nar/gkr944CrossRefPubMedGoogle Scholar
  23. 23.
    Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868.  https://doi.org/10.1038/nbt.3609CrossRefPubMedGoogle Scholar
  24. 24.
    Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828PubMedPubMedCentralGoogle Scholar
  25. 25.
    Geissmann Q (2013) OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 8(2):e54072.  https://doi.org/10.1371/journal.pone.0054072CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Molecular Plant Sciences, School of Biological Sciences, University of EdinburghEdinburghUK

Personalised recommendations